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We model the transport of electrically charged solute molecules by a laminar flow within a nanoslit microfluidic channel
with electrostatic surface potential. We derive the governing convection-diffusion equation, solve it numerically, and
compare it with a Taylor-Aris-like approximation which gives excellent results for small Péclet numbers. We discuss
our results in the light of designing an assay that can measure simultaneously the hydrodynamic size and electric charge
of single molecules by tracking their motion in such nanoslit channels with electrostatic surface potential.

PACS numbers: 42.25.Fx, 42.50.Pq, 78.67.Bf

I. INTRODUCTION

Structure and electrical charge are fundamental character-
istics of biological molecules. Electrostatic effects are ubiq-
uitous and dominate the activities and properties of many
biomolecules. The main driving forces behind protein fold-
ing are the burying hydrophobic amino acid residues in the
interior, the formation of salt bridges, and the formation of
favorable energetic contacts of polar groups on the surface
with solvent molecules. Ionic or ionizable groups on the sur-
face of biomolecules play crucial roles in fundamental bio-
logical processes ranging from ligand recognition, signaling,
protein folding, aggregation, enzymatic catalysis to redox re-
actions1–9. Metamorphic proteins and nucleic acid chains
exhibit more than one folded active conformation in native
conditions, often with different functions10–12. To investi-
gate the structure-function relation of biomolecules, one re-
quires knowledge of the full energy landscape and the effec-
tive charge on multiple pre-existing conformational isomers.
Today, established techniques such as X-ray crystallography,
small-angle X-ray scattering (SAXS), small-angle neutron
scattering (SANS), magnetic resonance spectroscopy (NMR),
and cryo-electron microscopy (cryoEM) are capable of deliv-
ering detailed atomic information on biomolecules (see for ex-
ample13). As a result, theoretical structure-based electrostatic
calculations are now routinely performed and used to dis-
sect the structure-function inter-relationships and properties
of these biomolecules. However, computational methods that
perform structure-based electrostatic calculations face chal-
lenges when simulating specific biomolecule-ion interactions
or biomolecule-biomolecule interactions in cellular settings
where they are immersed in a solution of numerous ions and
other small molecules and macromolecules. To handle im-
portant effects such as preferential hydration, ion-ion compe-
tition, charge regulation, or solvation is computationally ex-
pensive which severely limits the temporal and spatial scales
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of these calculations, often leading to inaccurate results14. Al-
though recent experimental advances are beginning to explore
the energy landscapes of proteins and nucleic acid chains15,16,
measuring electric charges of biological molecules in ion-
containing buffer solutions at single molecule level is far from
trivial17–20.

Solid-state nanopores have been used to characterize the
charge and size of biomolecules and they offer great poten-
tial for scalable high-throughput rapid protein and nucleic-
acid analysis. The core principle here is to measure the dwell
times of ionic current blockage while molecules (proteins,
nucleic acids) chain through the nanopores. However, this
method is limited by the passage time of a single amino or
nucleic acid, which is typically on the order of 10 ns to 1 µs,
poor signal-to-noise ratio due to thermal noise, interactions
with the nanopore walls, and the detrimental effect of the ap-
plied high voltages on the protein or oligonucleotide struc-
ture itself21,22. Recently, a high-precision method to measure
the electrical charge on single nanometer-scale objects using
a geometry-induced electrostatic fluidic trap has been intro-
duced23,24. The chief principle of this method is to modu-
late the spatial interaction potential of a charged object by in-
troducing topographical indentations onto a sub-micrometer
channel with like-charged walls, to then stably confine the
particles in local interaction potential minima. By measuring
the escape rates of fluorescently labeled biomolecules in such
traps, which scales exponentially with the potential difference
of having a particle inside or outside the trap, their effective
electrical charges were back-calculated with < 1e precision.
Although the method has promising potential, there are a few
major limitations that impact its accuracy in determining the
electrical charges. These are the determination of surface
charge properties of the silica walls that remains poorly re-
solved to date25–28, and the required a priori knowledge of the
molecules’ hydrodynamic radii that necessitates independent
measurements. Furthermore, the uncertainty of determining
the charge is often defined and limited by the accuracy of the
in silico numerical simulations of the entire experiment and
by the accuracy of the complex fabrication process.
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In the present article, we propose a new method for de-
termining simultaneously the size and the effective electrical
charge of fluorescently labeled biomolecules in a nanochan-
nel with thin conductive surfaces. The core idea is to mea-
sure the charge-dependent drift velocity and the dispersion
of biomolecules under lateral pressure-driven parabolic lam-
inar flow inside a nanochannel (or capillary) having a con-
stant electrostatic surface potential. For sufficiently small Pé-
clet numbers (ratio between characteristic diffusive and con-
vective transport times), the broadening of the concentration
peaks can be used for measuring molecular diffusion coef-
ficients. This broadening is perfectly described by the the-
ory developed by Taylor and Aris, who derived an expres-
sion for the apparent diffusion constant of the concentration
spreading as a function of the actual solute’s diffusion con-
stant, the channel size, and the mean flow velocity29–32. In
this work, we consider a similar problem, the convective-
diffusive transport of a solute along a planar nanoslit chan-
nel, but with channel walls having non-zero surface potential
and for charged solute molecules. The electrostatic interac-
tion with the channel walls and the Debye layer around them
alters the transversal distribution of the charged species across
the channel. When a pressure difference is applied along the
channel, the mean transport rate of molecules is modified sig-
nificantly by these interactions in a charge-dependent man-
ner. Although electrokinetic transport has been modeled ex-
tensively in the past33–35, very few theoretical works have tar-
geted the convective-diffusive transport of charged solute in
a nanochannel and are mostly limited to neutral solute par-
ticles36,37. Since Faxén derived the correction factor for the
drag coefficients of particles close to an interface in the be-
ginning of the 20th century38, low Reynolds number hydrody-
namics and classical Navier-Stokes equation have been used
to model the transport of particles within confinements of sim-
ilar dimensions. Quite recently, this classical framework was
successfully applied to find approximate analytical formulas
for the effective charge, diffusion coefficients, and mobility of
proteins through nanopores39. In the next section, we develop
the general theory for this problem and describe our approach
to numerically solve the corresponding convection-diffusion
equation. In the third section, we derive a Taylor-Aris-like
approximation for this problem. In the fourth section, we
present numerical and approximate results for realistic param-
eters, highlighting the feasibility of a single-molecule assay
for measuring electric charge and diffusion by tracking single
molecules in channels with non-zero surface voltage.

II. THEORETICAL FOUNDATION

We consider the convective-diffusive transport of a solute
in a slit channel of finite length L and width h (boundaries
y =±h/2) with a stationary laminar flow along the channel’s
axis (x-axis). Both surfaces of the slit channel are kept at
the same constant surface potential (voltage), and the solute
molecules that are transported by convection and diffusion
bear the electric charge q. For the sake of simplicity, we con-
sider the case where the ratio of solute size to channel width

is small enough to ignore Faxén’s correction factors for the
drag coefficient, or of any electroviscous effects40. This as-
sumption holds true for the majority of biomolecules of inter-
est that are smaller than or equal to 10 nm in diameter inside
a slit with a width in the order of 100 nm. In this case, the
solute’s flux density is given by

j =−D∇c(r, t)+
[

u(y) êx−
q
γ

∂yψ(y)êy

]
c(r, t) (1)

where c(r, t) is the local concentration of the solute molecules
at position r = {x,y} and time t, D is the diffusion coefficient,
u(y) is the y-dependent flow speed along the x-direction, ψ(y)
is the y-dependent electric potential, and γ = kBT/D is the
molecular friction coefficient. This leads to the following PDE
for the solute transport

∂tc =−divj = D∆c+Dµ∂y (c∂yψ)−u∂xc (2)

where we have introduced the abbreviation

µ =
q

kBT
.

For a pressure-driven flow within a constant pressure gradi-
ent, the flow speed is found by solving the stationary Stokes
equation41

η∂
2
y u = ∂x p ,

where η is the solution’s viscosity, and ∂x p < 0 is a constant
pressure gradient along x. With the no-slip boundary condi-
tions u(y =±h/2) = 0, this equation has the analytic solution

u(y) =
3
2

ū
(

1− 4y2

h2

)
,

where ū=−h2∂x p/12η is the mean flow velocity. In case of a
non-zero slip velocity u0 on the surface, this slip velocity has
only to be added to the just found velocity profile. However,
slipping should be important only for non-wetting liquids or
nanostructured surfaces, but less for smooth water/glass or
water/metal interfaces, channel widths of 100 nm, and low
Reynolds numbers as considered in the present paper42,43.

The electric potential ψ shall obey the linearized Poisson-
Boltzmann equation

∂
2
y ψ = κ

2
ψ ,

where κ is the inverse Debye length of the solvent which is
given by

κ =

√
2 ·103NAe2 I

ε0 ε kBT
,

with NA being the Avogadro-Loschmidt constant, e the el-
ementary charge, ε and I the dielectric constant and ionic
strength (in mol/l) of the solution, respectively, and ε0 the vac-
uum dielectric constant. In all numerical simulations below,
we use ε = 80.1 for water at room temperature (20 ◦C). With
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the boundary conditions ψ(y = ±h/2) = ζ , where ζ denotes
the surface -potential, this equation has the analytic solution

ψ(y) = ζ
cosh(κy)

cosh(κh/2)
.

We look for a solution c(r, t) of eq. (2) for periodic bound-
ary conditions along the x-direction, i.e. c(0,y, t) = c(L,y, t),
and no-flux conditions at the channel boundaries, i.e.

(∂yc+µc∂yψ)y=±h/2 = e−µψ
∂y (ceµψ)y=±h/2 = 0 .

The boundary conditions at x = 0 and x = L can essentially be
set arbitrarily since their effect is negligible sufficiently away
from the boundaries, particularly when L >> h. We will seek
this solution in the form

c(r, t) =
K

∑
k=−K

w̃k(y, t)exp
(
iqkx−q2

kDt
)
,

so that the concentration c(r, t) is represented by a discrete
Fourier series in the coordinate x with discrete Fourier fre-
quencies qk = 2πk/L, where 2K+1 is the number of summed
frequency components. Here, we have introduced new func-
tions w̃k(y, t) that depend only on the transverse coordinate y
and time t. This automatically assures periodic boundary con-
ditions along x. By inserting this Ansatz into eq. (2), one finds
that the auxiliary functions w̃k obey the elliptic partial differ-
ential equations

∂t w̃k = D∂
2
y w̃k +Dµ∂y (w̃k∂yψ)− iqkuw̃k (3)

with initial values

w̃k,0(y) =
1
L

∫ L

0
dxexp(−iqkx)c0(r) ,

where c0(r) is the initial concentration distribution at time t =
0. When introducing new variables

ω̃k = w̃k exp
(

µψ

2

)
eqs. (3) can be rewritten as

∂tω̃k = D∂
2
y ω̃k−Vk(y)ω̃k , (4)

with k-dependent complex-valued potentials

Vk(y) = iqku+Deµψ/2
∂

2
y

(
e−µψ/2

)
and boundary condition

∂

∂y

[
ω̃k exp

(
µψ

2

)]
y=±h/2

= 0 .

The eqs. (4) are much more amenable for numerical solution
than the original PDEs, because they do not involve first-order
derivatives in the coordinates (no convection terms). They can
be solved in a standard way via discretization and solving the
resulting algebraic equations, for details see ref.44,45.

III. TAYLOR-ARIS APPROXIMATION

For convection-diffusion transport of solutes in flows within
microfluidic channels, Taylor and Aris developed their famous
approximation30,31,46 which gives an excellent description of
the actual situation for small Péclet numbers. One can extend
this approximation to the case of convection-diffusion trans-
port of electrically charged solutes in an electric field that is
considered here. For this purpose, we expand the concen-
tration c(x,y, t) into the form exp(−µψ) [ā(x, t)+b(x,y, t)],
where ā(x, t) does not depend on y, b(x,y, t) describes small
deviations from ā, and the factor exp(−µψ) is proportional to
the Boltzmann equilibrium distribution of charge q in an elec-
tric potential ψ(y). Inserting this into eq. (2) and integrating
over the transversal coordinate y results in

∂ ā
∂ t

= D∂
2
x ā−〈u〉

ψ
∂xā−〈u∂xb〉

ψ
. (5)

where the angular brackets denote the weighted average

〈 f 〉
ψ
=
∫ h/2

−h/2
dye−µψ f (y)

/∫ h/2

−h/2
dye−µψ .

Subtracting eq. (5) from eq. (2) leads to

∂b
∂ t

=D
(
∂

2
x b+ eµψ

∂ye−µψ
∂yb
)

−δu∂xā−u∂xb+ 〈u∂xb〉
ψ
,

where δu = u−〈u〉ψ . Following the arguments of Taylor and
Aris30,31,46 and assuming that the gradients of b along y are
much bigger than gradients along x, and that the temporal
change of b is negligible, the last equation can be approxi-
mately written as

D∂ye−µψ
∂yb = e−µψ

δu∂xā .

Integration of this equation yields

b =
∂xā
D

∫ y

−h/2
dy′eµψ

∫ y′

−h/2
dy′′e−µψ

δu

+Ayeµψ − ∂xā
D

B ,

(6)

with integration constants A and B. Constant A has to be zero
to fulfill the boundary conditions, and constant B is deter-
mined by requiring that 〈b〉

ψ
= 0, so that we find

B =

〈∫ y

−h/2
dy′eµψ

∫ y′

−h/2
dy′′e−µψ

δu
〉

ψ

.

Now, we can use this solution to calculate 〈u∂xb〉ψ in eq. (5)
which then leads to a partial differential equation for ā alone.
Because the solution for b from eq. (6) is proportional to ∂xā,
the resulting equation for ā is a convection-diffusion equation
along only one spatial dimension x with drift velocity

udrift = 〈u〉ψ (7)
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and effective diffusion coefficient

Deff = D+
Budrift

D

− 1
D

〈
u
∫ y

−h/2
dy′eµψ

∫ y′

−h/2
dy′′e−µψ

δu
〉

ψ

.
(8)

In the case of zero electric field (or zero electric charge of
solute) one finds udrift = ū and

Deff = D
(

1+
h2ū2

210D2

)
= D

(
1+

Pe2

210

)
,

in agreement with ref.47. In the last equation, Pe is the Péclet
number, Pe = hū/D.

For an initial solute concentration distribution of

c0(x,y) =
1√

2πσ2
0

exp
[
− (x− x0)

2

2σ2
0
−µψ(y)

]

i.e. for a product of a Gaussian distribution with width σ0
along the x-direction and a Boltzmann equilibrium distribu-
tion along the y-direction, the approximate concentration dis-
tribution at time t is

c(x,y, t) =
1√

2πσ2(t)
exp
{
− [x− x̄(t)]2

2σ2(t)
−µψ

}
(9)

with x̄(t) = x0 + udriftt and σ2(t) = σ2
0 + 2Defft. Note that

even in the presence of slip boundary conditions, eqs. (7) and
(8) still represent the drift velocity and the effective diffusion
coefficient, respectively. The mean flow velocity in this case is
given by ū =−h2∂x p/12η +u0, where u0 is the fluid velocity
at the boundaries.

IV. NUMERICAL RESULTS AND DISCUSSION

We numerically simulated the transport of a spatially local-
ized concentration of solute along a 1 mm long slit channel
with width h = 200 nm and with surface potential of ζ = 1 V.
The initial concentration distribution was assume to be Gaus-
sian along the x-direction with a spatial square-root variance
σ0 = 10 µm. We performed the numerical simulation for two
scenarios: one with an electrically neutral solute, and one with
a solute having an electric charge of q= 1e. The discretization
grid of the numerical calculation had a grid spacing of 250 nm
along the x-direction, and of 1 nm along the y-direction. The
mean flow velocity was set to ū = 66.67 µm/s, and the so-
lute’s diffusion coefficient was assumed to be D = 100 µm2/s.
The calculational result is shown in Fig. 1, where the pan-
els in the left column show the transport for electrically neu-
tral molecules (i.e. for q = 0), and the right panels for solute
molecules with a single positive elementary charge. As can be
seen, the electric field forces the charged molecules towards
the center of the channel, which leads to an on average faster
transport along the x-direction for the charged solute as com-
pared to that of the neutral solute.

Figure 1. Numerical modeling of convection-diffusion in a slit chan-
nel of 200 nm width with pressure-driven flow for neutral (left col-
umn) and charged (q = 1e) molecules (right column) using equa-
tion (4). The model parameters are: mean convection velocity
ū = 66.67 µm/s, diffusion coefficient D = 100 µm2/s, surface po-
tential ζ = 1 V, Debye length of κ−1 = 45 nm. The parabolic flow
profile is sketched in the top left panel. Time values on the right are
given in seconds.

A comparison of this exact numerical calculation with the
Taylor-Aris approximation of eq. (9) shows that the approxi-
mation is virtually indistinguishable from the exact result, see
Fig. 2, where a cross-section averaged broadening of concen-
trations at various x-positions are plotted for comparison. This
is due to the extremely small Péclet number of ∼0.018 which
is dominated by the small channel width h. For all parame-
ter values relevant for the present study (average flow speed,
channels size, viscosity), one remains always in the regime
of small Péclet numbers, so that the Taylor-Aris approach
is a perfect approximation of the exact results, but offering
a tremendously better computational efficiency of more than
five orders of magnitude (for example, the numerical com-
putation time for Fig. 2 was ∼450 s, whereas the computa-
tion time for the Taylor-Aris approximation was∼3 ms, using
the same PC hardware and Matlab software platform). The
Taylor-Aris approximation also clearly shows that the small
Péclet numbers lead to an effective diffusion coefficient Deff
that is virtually equal to D. However, the drift velocity udrift
becomes strongly charge-dependent and differs considerably
from ū for charged solute molecules, in stark contrast to clas-
sical Taylor-Aris dispersion which leads to an enhanced diffu-
sion coefficient but unchanged drift velocity.

Using eq. (7), we calculated the dependence of the drift ve-
locity as a function of surface potential ζ and Debye length
κ−1 (i.e. ionic strength I) as shown in Fig. 3. The yellow line
in Fig. 3 depicts the line of maximum drift velocity as a func-
tion of surface potential. For large surface potential above
ζ = 0.5 V, this maximum drift velocity saturates and comes
close to its maximally possible value of 3ū/2 (the maximum
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Figure 2. Comparison between numerical calculation shown in the
right panels of Fig. 1 and the corresponding Taylor-Aris approxima-
tion of eq. (9). Shown is the temporal evolution of the cross-section
averaged concentration as function of x-position.

flow velocity at the channel’s center line). For negative surface
potential, one sees a retardation of the drift velocity which is
due to increasing concentration of solute close to the chan-
nel walls due to electrostatic attraction. Thus, convection-
diffusion of solutes in the slit channel with sufficiently large
surface potential will lead to a separation between neutral and
charged solutes. However, for large surface potential values
as on the right side of the figure, increasing the charge will
nearly not change the drift velocity anymore. If one is inter-
ested in efficiently separating differently charged solutes, one
should work with surface potentials where the slope of the
yellow line in Fig. 2 is largest, i.e. close to ζ ∼ 0, but not too
small so that one can observe efficient separation of different
solutes within reasonable channel length (and time). If one
aims for a drift velocity enhancement of ∼ 10% over ū for a

Figure 3. Relative drift velocity udrift/ū as a function of surface po-
tential (surface voltage) and Debye length (ionic strength). The yel-
low line is the line of maximum drift velocity as a function of surface
potential. Calculations were done for the same channel and solute
parameters as used for the right panels of Fig. 1.

Figure 4. Ionic strength that maximizes drift velocity udrift at ζ = 1 V
surface potential as a function of channel width h. In Fig. 3, this
value corresponds to the intersection of the yellow line with the right
abscissa.

singly charged solute, reasonable surface potential values are
around ζ = 50 mV for an ionic strength of ca. 100 µM (chan-
nel width 200 nm). As can be seen from Fig. 3, working at
even higher ionic strength is possible when correspondingly
working at larger values of surface potential (see stretching
of relative drift velocity values along horizontal axis for small
Debye length i.e. high ionic strength). To estimate how the
plot of Fig. 3 will change with smaller channel width, we cal-
culated the ionic strength that maximizes the relative drift ve-
locity at ζ = 1 V surface potential as a function of channel
width. The result is shown in Fig. 4. As can be seen, for tech-
nically reasonable channel width values between 40 nm and
400 nm, this ionic strength varies between 1 µM and 1 mM,
and this roughly gives an estimate how the vertical axes in
Fig. 3 re-scales when changing the channel width. For exam-
ple, when working with a channel having a width of 40 nm
instead of 200 nm, one can work at ca. 25 times higher ionic
strength while observing a similar behavior as shown in Fig. 3.

Finally, we would like to make some rough estimates for us-
ing drift velocity measurements in nanoslit microfluidic chan-
nels for charge determination of single solute molecules. For
this purpose, we calculated, in the Taylor-Aris approximation
of eq. (9), the relative drift velocity as a function of the prod-
uct of electric charge and surface potential (please note that
only this product determines the drift velocity, not the sepa-
rate values of charge or surface potential). The result for a
200 nm wide channel at ca. 100 µM ionic strength is pre-
sented in Fig. 5. The annotations in this figure refer to six
different relative drift velocities for a solute molecule with a
charge between 1 and 6 elementary charges at a surface po-
tential of 50 mV. Let us denote by R the difference of relative
drift velocities between two charge states differing by one el-
ementary charge, and let us assume that one tracks the motion
of a molecule along a channel of length L, then the mean dif-
ference in traveled distances after run length L is RL, while
at the same time the diffusion-induced spreading of position
is
√

2DL/ū. If we assume that for distinguishing different
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charge states based on mean drift velocity, the mean differ-
ence in traveled distances should be at least three times bigger
than the diffusion-induced spreading, then we find the follow-
ing estimate for the required minimum run length (channel
length L) over which on has to track a molecule:

L =
18D
ūR2

(10)

Assuming a typical diffusion coefficient of 100 µm2/s (hydro-
dynamic radius of solute molecule ca. 1 nm) and a mean flow
speed ū of 1000 µm/s, then one needs a microfluidic channel
length of ca. 4500 µm for distinguishing between q = 5e and
q = 6e (R ≈ 0.02, see Fig. 5), with mean travel times (total
observation time per molecule) of 3-4.5 s. To prevent pho-
tobleaching during such a long time, stroboscopic excitation
could be employed. For smaller values of charges (q = 4e and
q = 5e, q = 3e and q = 4e etc.), shorter channel lengths would
be sufficient. For example, one would need only a 60 µm long
channel for distinguishing between zero and one elementary
charge (R≈ 0.17), with a mean travel time of 40-60 ms, which
would require, however, imaging at 1000 frames per second.
But our estimate shows that by tracking molecules along suf-
ficiently long nanoslit channels, one should be able to resolve
between 0 and 6 charge states when using a microfluidic chip
with a total channel length of 4.5 mm, which could be realized
in a compact way by a meandering channel design. By com-
paring the absolute mean drift velocity udrift with the mean
flow velocity ū for an applied surface potential and given ge-
ometry of the slit, the absolute charge of the solute species can
be estimated. Moreover, evaluation of a molecule’s diffusive
motion around its mean drift position would simultaneously
allow for determining its diffusion coefficient and thus hydro-
dynamic size. This can be done using existing single parti-
cle tracking algorithms that employ a stochastic drift-diffusion
model for the particle motion along the x-axis48,49. Note that
in the presence of slip boundary conditions, the relative drift
velocities R will decrease with increasing fluid velocity at the
boundary, so that the minimum run length L required for dis-
tinguishing different charge states will be longer.

We would like to emphasize that the mean-field based the-
oretical approach presented here is applicable as long as the
channel surfaces can be considered to be in the “far-field” of
the charged molecules, i.e. at least one Debye length, κ−1,
away. The channel width and electrolyte concentration con-
sidered in this work satisfy this criterion, as shown in Fig. 4.
Furthermore, the considered Debye lengths are substantially
longer than the Bjerrum length (0.71 nm for water at room
temperature), so that ion-ion correlations are not significant
and the Poisson-Boltzmann theory remains generally valid50.
The surface potential values that we consider in our paper and
which are required for successfully separating charges are so
large that the probability to find a (likely) charged molecule
close to the walls is negligible as compared to the probability
to find it towards the middle of the channel.

Importantly, the interaction of charged molecules with the
channel walls is governed by their effective and not their for-
mal structural charge. Whereas the latter can be derived
from the structure of the molecular species in a straight-

Figure 5. Relative drift velocity R = udrift/ū as a function of the
product of charge and surface potential for a channel width of 200 nm
and a Debye length of 30 nm. The annotated five values are the
relative drift velocities for solute molecules with 1 to 6 elementary
charges at a surface potential of 50 mV on the channel walls.

forward manner, the former is a resultant of charge regula-
tion and renormalization phenomena that take into account
the acid-base equilibrium of the molecules’ ionizable groups
modified by their local environment and by intramolecular
Coulomb interactions, as well as counter-ion condensation on
the molecules’ surface51. The free energy of the long-range
interactions between a molecule and the channel walls at a
given electrolyte concentration is determined by this effective
charge52.

Finally, let us mention that a well-defined surface potential
on the channel walls can be generated with transparent elec-
trodes on these walls.

V. CONCLUSION

We have considered the problem of the convection-
diffusion of charged solute molecules in a nanoslit microflu-
idic channel with electric surface potential and transported
by a laminar parabolic flow. We have derived the govern-
ing equations for this problem, and solved them numerically.
We have also found a Taylor-Aris-like approximation of the
solution which yields excellent results for small Péclet num-
bers. Finally, we have discussed our numerical results in the
light of designing a single-molecule assay that could simul-
taneously measure hydrodynamics size and electric charge
of biomolecules, providing reasonable estimates for channel
width, length, surface potential and flow speed, and for the
range of ionic strength values of the solvent for which such an
assay could work. With our mean-field Poisson-Boltzmann
theory, we currently consider only monovalent electrolytes
neglecting ion-ion correlations, ion-specific effects such as
ion affinity, and the finite size of ions. A suitable modi-
fied Poisson-Boltzmann equation can be incorporated in fu-
ture that takes into account most of these effects.
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