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Motivation: Designing inductively coupled plasma torches
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Outlook: Designing inductively coupled plasma torches

Challenges:

• Complex multiphysics model. Still under development.

• Prohibitively expensive simulations.

• Large uncertainty in model parameters.

Two algorithms needed:

1. An efficient Monte Carlo method for forward uncertainty quantification.

2. A method for approximating the region of stable torch operating conditions.
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2. Multilevel best linear unbiased estimators via semidefinite programming

Joint with: K. E. Willcox (UT Austin), S. J. Wright (UW-Madison).
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Forward uncertainty propagation and Monte Carlo methods

Forward UQ: given a (computational) model that depends on uncertain parameters with
known distribution, compute how this uncertainty propagates to the model predictions.

Mathematical formulation: approximate the expectation E[P0] of an output QoI P0(ω).

Standard approach: Monte Carlo sampling, i.e. E[P0] ≈
1

n

n∑
i=1

P0(ω
i). Expensive!

M0ω P0
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Multilevel/multifidelity Monte Carlo methods [Heinrich ’01, Giles ’08, Ng & Willcox ’12, Gorodetsky et al. ’20]

Multilevel and multifidelity Monte Carlo methods strategically combine high- and
low-fidelity model samples and exploit their correlations to drastically reduce costs.

M0

P0

ω

M1

P1

ω
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ω

Multilevel/multifidelity Monte Carlo methods. M0 = high-fidelity model.

Note: Different methods combine models differently and in specific groups.

Definition: Model group or combination = set of models sampled with the same input.
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Example: Multilevel Monte Carlo [Heinrich ’01, Giles ’08]

Select L models (model selection) and order them by cost.

E[P0] = E[PL−1] +

L−2∑
ℓ=0

E[Pℓ − Pℓ+1].

Apply standard MC to each term on the RHS to obtain the MLMC estimator:

E[P0] ≈ µ̂0 =
1

nL−1

nL−1∑
i=1

PL−1(ω
i
L−1) +

L−2∑
ℓ=0

1

nℓ

nℓ∑
i=1

[Pℓ(ω
i
ℓ)− Pℓ+1(ω

i
ℓ)].

To find the optimal sample allocation we must solve the optimization problem

min
n>0

V[µ̂0] =

L−1∑
ℓ=0

Vℓ

nℓ
, s.t. nTc ≤ b,

For a single-QoI there is a closed-form expression for the optimal n.
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Model selection and sample allocation problems (MOSAPs)

Given a set of available models, how do we find the optimal model combinations?
How many samples should we draw for each model?

M0

ω

W0Z0Q0P0

M1

ω

W1Z1Q1

M2

ω

W2Q2P2

M3

ω

W3Z3

All methods require solving a model selection and sample allocation problem (MOSAP)
for their setup. MOSAPs are typically nonlinear, non-convex optimization problems.

Objective

Given a set of models and a list of QoIs, automatically construct an optimal estimator.

7/29



Model selection and sample allocation problems (MOSAPs)

Given a set of available models, how do we find the optimal model combinations?
How many samples should we draw for each model?

M0

ω

W0Z0Q0P0

M1

ω

W1Z1Q1

M2

ω

W2Q2P2

M3

ω

W3Z3

All methods require solving a model selection and sample allocation problem (MOSAP)
for their setup. MOSAPs are typically nonlinear, non-convex optimization problems.

Objective

Given a set of models and a list of QoIs, automatically construct an optimal estimator.

7/29



Multilevel best linear unbiased estimators (MLBLUEs) [Schaden & Ullmann 2020]

MLBLUE advantages:
• Optimality.
• In-built automatic model selection strategy.

Consider a single QoI. The MLBLUE algorithm finds an optimal estimator µ̂ for µ = E[P ].

p = Rµ+ ε
coupled samples of
all possible groups

mean of p

error: zero-mean
correlated noise

The optimal model selection and sample allocation is found by solving the MOSAP

min
n≥0

V[eT µ̂] = min
n≥0

eTΨ−1(n)e, s.t. nTc ≤ b,

Ψ ⪰ 0 is the matrix of the regression problem for µ, e = [1, 0, . . . ]T , n and c are vectors
containing the number of samples and costs of each model group respectively, b is the budget.

Warning: The MLBLUE MOSAP is ill-posed!

8/29



Multilevel best linear unbiased estimators (MLBLUEs) [Schaden & Ullmann 2020]

MLBLUE advantages:
• Optimality.
• In-built automatic model selection strategy.

Consider a single QoI. The MLBLUE algorithm finds an optimal estimator µ̂ for µ = E[P ].

p = Rµ+ ε
coupled samples of
all possible groups

mean of p

error: zero-mean
correlated noise

The optimal model selection and sample allocation is found by solving the MOSAP

min
n≥0

V[eT µ̂] = min
n≥0

eTΨ−1(n)e, s.t. nTc ≤ b,

Ψ ⪰ 0 is the matrix of the regression problem for µ, e = [1, 0, . . . ]T , n and c are vectors
containing the number of samples and costs of each model group respectively, b is the budget.

Warning: The MLBLUE MOSAP is ill-posed!

8/29



Multilevel best linear unbiased estimators (MLBLUEs) [Schaden & Ullmann 2020]

MLBLUE advantages:
• Optimality.
• In-built automatic model selection strategy.

Consider a single QoI. The MLBLUE algorithm finds an optimal estimator µ̂ for µ = E[P ].

p = Rµ+ ε
coupled samples of
all possible groups

mean of p

error: zero-mean
correlated noise

The optimal model selection and sample allocation is found by solving the MOSAP

min
n≥0

V[eT µ̂] = min
n≥0

eTΨ−1(n)e, s.t. nTc ≤ b,

Ψ ⪰ 0 is the matrix of the regression problem for µ, e = [1, 0, . . . ]T , n and c are vectors
containing the number of samples and costs of each model group respectively, b is the budget.

Warning: The MLBLUE MOSAP is ill-posed!

8/29



Multilevel best linear unbiased estimators (MLBLUEs) [Schaden & Ullmann 2020]

MLBLUE advantages:
• Optimality.
• In-built automatic model selection strategy.

Consider a single QoI. The MLBLUE algorithm finds an optimal estimator µ̂ for µ = E[P ].

p = Rµ+ ε
coupled samples of
all possible groups

mean of p

error: zero-mean
correlated noise

The optimal model selection and sample allocation is found by solving the MOSAP

min
n≥0

V[eT µ̂] = min
n≥0

eTΨ−1(n)e, s.t. nTc ≤ b,

Ψ ⪰ 0 is the matrix of the regression problem for µ, e = [1, 0, . . . ]T , n and c are vectors
containing the number of samples and costs of each model group respectively, b is the budget.

Warning: The MLBLUE MOSAP is ill-posed!

8/29



MLBLUE extensions required

MLBLUE advantages:

• Optimality.

• In-built automatic model selection strategy.

MLBLUE limitations:

1. Requires nonlinear optimization.

2. MOSAP is ill-posed.

3. Standard MLBLUE method is single-output only.

Our contributions:

1. Speed and reliability. Reformulated MOSAP as a semidefinite program for which fast
and robust solvers exist. This reformulation also removes ill-conditioning.

2. Multi-output problems. Extended to multiple outputs while preserving optimality.
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Semidefinite programming reformulation

The MLBLUE standard MOSAP is

min
n≥0

eTΨ−1(n)e, s.t. nTc ≤ b.

Theorem

The above formulation is equivalent to the following well-posed semidefinite program (SDP):

min
t,n≥0

t, s.t. Φ(t,n) =

[
Ψ(n) e
eT t

]
⪰ 0, nTc ≤ b, nTh ≥ 1.

where h is a known boolean vector. Φ is linear in t and Ψ(n), which in turn is linear in n.

Multi-output extension: use one semidefinite constraint for each QoI.

SDPs can be solved almost as reliably and efficiently as a linear program!
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Numerical experiments
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Hodgkin-Huxley model
The Hodgkin-Huxley model for neuron membrane action potential:


C(ω)Vt = I(ω) + ϵ(ω)∆V + gKn

4(Vk − V ) + gNam
3h(VNa − V ) + gl(Vl − V ),

nt = αn(V )(1− n)− βn(V )n,

mt = αm(V )(1−m)− βm(V )m,

ht = αh(V )(1− h)− βh(V )h.

leakage currentsodium currentpotassium currentmembrane current

potassium gated channel activation

sodium gated channel activation

sodium gated channel inactivation

neuron membrane action
potential

The corresponding FitzHugh-Nagumo model:
C(ω)Vt = I(ω) + ϵ(ω)∆V + gKn

4(Vk − V ) + gNam
3
∞(h̄− n)(VNa − V ) + gl(Vl − V ),

nt = αn(V )(1− n)− βn(V )n,

m = m∞ = const, n+ h = h̄ = const. simplifying assumptions

Domain: unit interval. BCs: no-flux on left boundary and zero Dirichlet on the right
boundary. Uncertainty: diffusivity, capacitance, and current.

QoIs: peak potential, total membrane, ionic, and leakage currents. Models: Hodgkin-Huxley
and FitzHugh-Nagumo PDEs and ODEs (no diffusion), grid and timestep refinements.
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Hodgkin-Huxley model

0 2 4 6 8 10 12
Sampling cost ×108

MLBLUE

MLMC

MFMC

Model type

fine mesh

medium mesh

coarse mesh

ODE

Note: only MLBLUE uses the FitzHugh-Nagumo models.
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Steady Navier-Stokes flow past two cylinders.


−ν(ω)∆u+ u∇u+∇p = 0, ∇ · u = 0, x ∈ D2, ω ∈ Ω,
u|Γt = u|Γb

= u|C1 = u|C2 = 0, ν(ω)∇u|Γr · n− p|Γrn = 0, ω ∈ Ω,

u|Γl
=

(
4U(ω)y(h−y)

h2 , 0
)T

, x = (x, y)

Non-dimensionalized velocity, sample at Re = 50.
Boundaries: Γl: left. Γr: right. Γt: top. Γb: bottom. C1: first cylinder. C2: second cylinder.

QoIs: lift and drag coefficients and pressure differences at each obstacle.
Models: hierarchy of 3 meshes combined with 4 types of local grid refinements around
cylinders (both C1 and C2, C1 only, C2 only, no local refinement). 12 models in total.
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Steady Navier-Stokes flow past two cylinders

0 2 4 6 8 10 12
Sampling cost ×105

MLBLUE

MLMC

MFMC

Global mesh size and local refinement (LR) around cylinders

Fine mesh

Medium mesh

Coarse mesh

LR: Left & Right

LR: Left

LR: Right

LR: None
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3. Approximating level sets of probability functions

Joint with: A.-L. Haji-Ali (Herriot-Watt University).
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Approximating the region of stable torch operating conditions

Background: ICP torches may blow out under some uncertain parameter regimes.

Objective: Find the parameter region in which the torch is stable with high probability.
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Approximating level sets of noisy functions - Preliminaries

Mathematical challenge: Approximate the level set of a scalar function f(x), x ∈ D ⊂⊂ Rd

that is only accessible via expensive and noisy point evaluations (due to Monte Carlo).

Point evaluations. In general, specialized techniques are required for estimating probabilities
(cf. works by Giles, Nobile, Haji-Ali). Here we can use MLBLUE + pre-integration.

Wishlist:

• Efficiency. Speedup via spatial and stochastic adaptivity.

• Robustness and accuracy. Approximation proven to capture the level set of f with high
probability while avoiding spurious level sets.
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Approximating level sets of noisy functions - Preliminaries

Idea: Construct a goal-oriented adaptive piecewise-polynomial approximation f̂(x, ω) of f(x)
by interpolating Monte Carlo approximations of f(x) on an adaptively constructed grid.

Two requirements for adaptivity:

1. ε accuracy on the level set.

2. Just enough accuracy away from the level set so that spurious level sets are avoided.

Definitions:

Lf (ε) := {x ∈ D̄ : |f(x)| ≤ ε}, Lf̂ (ε, ω) := {x ∈ D̄ : |f̂(x, ω)| ≤ ε}, for ε > 0.
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Lf (ε) := {x ∈ D̄ : |f(x)| ≤ ε}, Lf̂ (ε, ω) := {x ∈ D̄ : |f̂(x, ω)| ≤ ε}, for ε > 0.

Requirement: With high probability,
it must hold that ∀ε > 0, ∃c > 0,

Lf (0) ⊆ Lf̂ (ε, ω) ⊆ Lf (cε).
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Outlook: A work in progress

At the moment we have:

• A working convergence and complexity
theory in the noise-free case.

• A working algorithm.

What we do not have yet:

• Working theory for noisy evaluations.

• Complete numerical results.

Suggestions are welcome!
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Theory for noise-free evaluations

Theorem

|f(x)− f̂(x)| ≤ max(ε, |f(x)| − ε) =⇒ Lf (0) ⊆ Lf̂ (ε) ⊆ Lf (2ε).

Main assumption

Let Dh be a mesh of D. For each cell □i ∈ Dh of size hi, we assume that we can construct an
a posteriori local error estimator ei satisfying for c̃ > 0, pi > 0,

max
x∈□i

|f(x)− f̂(x)| ≤ ei ≤ c̃hpii ,

Theorem

ei ≤ max

(
ε, min

x∈□i

|f̂(x)| − ε

)
∀i, =⇒ Lf (0) ⊆ Lf̂ (ε) ⊆ Lf (2ε)
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Algorithm for noise-free problems

ei ≤ max

(
ε, min

x∈□i

|f̂(x)| − ε

)
=⇒ Lf (0) ⊆ Lf̂ (ε) ⊆ Lf (2ε) (⋆)

Adaptive algorithm

Start from a coarse mesh and construct an initial piecewise polynomial approximation and
corresponding local error estimators (we use one round of uniform refinement).

While there exists i violating (⋆):

1. Refine all cells violating (⋆).

2. Evaluate f at the new mesh nodes.

3. Update the polynomial approximation and the error estimators.

Return the final approximation f̂ .
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How the algorithm works in practice
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Convergence and complexity theory

Theorem

Let 0 < ε ≪ δ with δ independent from ε and assume that:

1. f ∈ Cq(Lf (δ)) ∪ Cs(D̄) for q > 1, s > 0.

2. ∇f ̸= 0 on Lf (0).

Then the above algorithm finds an approximation f̂ satisfying

Lf (0) ⊆ Lf̂ (ε) ⊆ Lf (2ε)

with an asymptotic cost complexity bounded by

Ctot ≤
{
cpceval max (1, log | log(ε)|) , d = 1,

cpcevalε
1−d
p , d > 1,

where cp > 0, and ceval > 0 is the maximum cost of a function evaluation.
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Complexity and Accuracy - inverse quartic (2D) + chalice (3D)
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Numerical results - 3D Level-set estimation with noise

1 million evaluations 10 million evaluations
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Numerical results - Hyperelastic beam with uncertain Lamé parameters
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Numerical results - Hyperelastic beam with uncertain Lamé parameters
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4. Conclusions
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Conclusions

To sum up

• MLBLUEs are powerful and their automatism is appealing to computational engineers,
but their efficiency is tied to how accurately their MOSAPs can be solved.

• The new SDP MOSAPs can be solved reliably and efficiently and extend to the
multi-output case. We obtained 100x MOSAP speedup.

• Approximating level sets of probability functions is a challenging problem. Our adaptive
strategy is efficient and proven to converge.

• For noisy evaluations, the theory extends as-is by simply replacing | · | with E[| · |]. The
challenge is in the construction of a robust cell-wise estimator.

MLBLUE open-source software
github.com/croci/bluest
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Thank you for listening!

More info about me and my work at: croci.github.io

MLBLUE open-source software: github.com/croci/bluest
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