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Floating point formats

Recent trend in chip manufacturing: Many new chips supporting low-precision
computations. Double precision not prioritised due to AI focus.

Format unit roundoff u Range

fp64 (double) 2−53 ≈ 1.11× 10−16 10±308

fp32 (single) 2−24 ≈ 5.96× 10−8 10±38

fp16 (half) 2−11 ≈ 4.88× 10−4 10±5

bfloat16 (half) 2−8 ≈ 3.91× 10−3 10±38

Half vs double max speedups: ×4 on CPUs, ×32+ on tensor-cores/AMX.
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Mixed-precision algorithms

Mixed-precision algorithms

Mixed-precision algorithms combine low- and high-precision computations in order to
benefit from the performance gains of reduced-precision while retaining good accuracy.

Today’s focus

Designing efficient mixed-precision finite element cell kernels.

Motivation (see e.g., [Abdelfattah et al. 2021])

Many mixed-precision algorithms exploit reduced-precision operators for speedup:
Preconditioning, linear/nonlinear solvers, and timestepping methods.

Warning: Work in progress!
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AMX accelerators on Intel Xeon CPUs

AMX implement pairwise matrix-matrix multiply and accumulate as follows:

S += AB + CD, {A,C} ⊂ Rm×k, {B,D} ⊂ Rk×n,

where A, B, C, and D are stored in bf16 and S in single precision. Operations carried
out in single. Max sizes: m, k, n = 16.

AMX can be up to 64× faster than double precision vectorized computations!

Of course, AMX cannot be used for everything.
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2. Mixed-precision finite element kernels

4/13



Challenge: Exploiting MP accelerators in FE cell kernels

The Masterplan

A) Make mat-mat products the bottleneck.

B) Rounding error analysis.

C) Implementation.

Example: Poisson form over a single cell K ⊂ Rd,

aK(uh, vh) =

∫
K
∇uh · ∇vh dx, uh, vh ∈ Vh|K = span({ϕi}mi=1).

Cell kernels: Compute local matrix resulting from the above form (can also do actions):

Aij = aK(ϕj , ϕi), A ∈ Rm×m,

5/13



Challenge: Exploiting MP accelerators in FE cell kernels

The Masterplan

A) Make mat-mat products the bottleneck.

B) Rounding error analysis.

C) Implementation.

Example: Poisson form over a single cell K ⊂ Rd,

aK(uh, vh) =

∫
K
∇uh · ∇vh dx, uh, vh ∈ Vh|K = span({ϕi}mi=1).

Cell kernels: Compute local matrix resulting from the above form (can also do actions):

Aij = aK(ϕj , ϕi), A ∈ Rm×m,

5/13



Challenge: Exploiting MP accelerators in FE cell kernels

The Masterplan

A) Make mat-mat products the bottleneck.

B) Rounding error analysis.

C) Implementation.

Example: Poisson form over a single cell K ⊂ Rd,

aK(uh, vh) =

∫
K
∇uh · ∇vh dx, uh, vh ∈ Vh|K = span({ϕi}mi=1).

Cell kernels: Compute local matrix resulting from the above form (can also do actions):

Aij = aK(ϕj , ϕi), A ∈ Rm×m,

5/13



A) Cell kernels as sum of mat-mat products

It can be shown that A can be expressed as a sum of triple matrix products:

A =
∑
s

∑
t

BsDstB
T
t , Bs ∈ Rm×nq , Dst ∈ Rnq×nq ,

B = Derivatives of basis functions at quadrature points (3D tensor).
D = Quadrature weights and geometry at quadrature points (4D sparse tensor).

For actions: Use cell batching =⇒ Also obtain sum of mat-mat prods.
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B) Rounding error analysis

Theorem (proof in progress)

Computing A using the following precisions:

• ustore for storing B and computing the action of D,

• uq for performing and accumulating mat-mat products,

• ug for computing the geometry tensor,

• up for evaluating basis functions on the reference cell,

yields instead Â satisfying

∥A− Â∥∞ ≲
(
ustore + (d2 + nq)uq + κ∞(J)ug + pdup

)
∥A∥∞.
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B) Rounding error analysis

Cost-accuracy trade off. Want to use low precision for speed, but stay accurate.

Objective: Obtain O(u) accuracy where u is the half-precision unit roundoff.

AMX/tensor core strategy:

1. High-precision for geometry and basis evaluation.

2. Cast to half and use AMX for the rest.
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C) Implementation (C++)

Implementation challenges

1. Brand new chip functionalities mean lack of compiler support and bugs.

2. Compilers won’t use AMX for you. Exotic system calls and Intel intrinsics needed.

3. AMX library support limited/bugged, yet growing.

Testing and debugging: Use FFCX-generated kernels.
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3. Numerical results
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Numerical results - Poisson form in 3D
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Numerical results - Mass form in 3D
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4. Conclusions
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Conclusions

To sum up

• We can compute FE kernels up to 10− 50× faster using AMX. Implementation was
admittedly challenging. Luckily, AMX software support is growing.

• Multiple applications can benefit from faster FE kernels: Preconditioning, iterative
refinement, inexact Krylov and Newton solvers, timestepping methods, etc.

• GPU kernels and algorithmic applications will be addressed in future work.

Thank you for listening!
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Thank you for listening!

More info about me and my work at: croci.github.io
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