
Mixed-precision explicit Runge-Kutta methods

Matteo Croci

Collaborator: Giacomo Rosilho De Souza (Euler Institute, USI Lugano)

21st IMA Leslie Fox Prize Event, University of Strathclyde, 26 June 2023

Main reference: M. Croci and G. Rosilho de Souza. Mixed-precision explicit stabilized Runge–Kutta
methods for single-and multi-scale differential equations. Journal of Computational Physics, 464:111349,
2022.

Overview

1. Introduction

2. Mixed-precision RK methods for linear problems

3. Mixed-precision RK methods for nonlinear problems
Overview
Mixed-precision Runge-Kutta-Chebyshev methods

4. Conclusions

1/22

1. Introduction

1/22

Mixed-precision algorithms
Mixed-precision algorithms combine low- and high-precision computations in order to
benefit from the performance gains of reduced precision while retaining good accuracy.

Example application: Weather and climate forecasting [Klower et al. 2022]

Shallow-water eqs for 2D oceanic flow:
v̇ + v · ∇v + ẑ × v = −∇η + ∆2v − v + F ,

η̇ +∇ · (vh) = 0,

q̇ + v · ∇q = −τ(q − q0).

3/22

Common floating-point formats

Format unit roundoff u range

bfloat16 (half) 2−8 (≈ 2.5 digits) ≈ 10±38

fp16 (half) 2−11 (≈ 3.5 digits) ≈ 10±4.5

fp32 (single) 2−24 (≈ 7 digits) ≈ 10±38

fp64 (double) 2−53 (≈ 15 digits) ≈ 10±308

Better performance: 16-bits computations are 4x faster than double precision on
CPUs and 16x faster on GPUs. Energy-/memory-efficiency gains are also comparable.

All major chip manufacturers (e.g., AMD, ARM, NVIDIA, Intel, ...) have commercialized
chips (CPUs, GPUs, TPUs, FPGAs, ...) supporting half-precision computations.

Note: today we employ double/bfloat16 via software emulation (no timings available).

4/22

Today’s focus: Mixed-precision explicit Runge–Kutta methods

Our work: design mixed-precision explicit Runge–Kutta schemes for solving:

y′(t) = f(y(t)), y(0) = y0,

Objective

Evaluate f in low-precision as much as possible without affecting accuracy or stability.

5/22

2. Mixed-precision RK methods for linear problems

5/22

Linear problems

We start by considering linear problems in the form:

y′(t) = Ay(t), y(0) = y0.

Required for the analysis: A rounding error bound for matrix-vector products,

Theorem (Lemma 6.6 in [Higham 2002])

Let A ∈ Rm×m. Barring underflow/overflow, there exists c > 0 depending on m s.t.

Âx = (A+ ∆A)x, with ‖∆A‖2 ≤ cu‖A‖2 = O(u).

6/22

Linear problems

We start by considering linear problems in the form:

y′(t) = Ay(t), y(0) = y0.

Required for the analysis: A rounding error bound for matrix-vector products,

Theorem (Lemma 6.6 in [Higham 2002])

Let A ∈ Rm×m. Barring underflow/overflow, there exists c > 0 depending on m s.t.

Âx = (A+ ∆A)x, with ‖∆A‖2 ≤ cu‖A‖2 = O(u).

6/22

Linear problems - local error

Consider the exact solution at t = ∆t and its corresponding s-stage, p-th order RK
approximation:

y(∆t) = exp(∆tA)y0 =

∞∑
j=0

(∆tA)j

j!
y0,

y1 = Rs(A)y0 =

p∑
j=0

(∆tA)j

j!
y0 +O(∆tp+1).

Giving a local error τ = ∆t−1‖y(∆t)− y1‖2 = O(∆tp).

Evaluating the scheme in finite precision yields:

ŷ1 = ̂Rs(A)y0 = ε+ y0 +

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)

)
y0 +O(∆tp+1).

7/22

Linear problems - local error

Consider the exact solution at t = ∆t and its corresponding s-stage, p-th order RK
approximation:

y(∆t) = exp(∆tA)y0 =

∞∑
j=0

(∆tA)j

j!
y0,

y1 = Rs(A)y0 =

p∑
j=0

(∆tA)j

j!
y0 +O(∆tp+1).

Giving a local error τ = ∆t−1‖y(∆t)− y1‖2 = O(∆tp).

Evaluating the scheme in finite precision yields:

ŷ1 = ̂Rs(A)y0 = ε+ y0 +

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)

)
y0 +O(∆tp+1).

7/22

Local error and order preservation

τ = ∆t−1‖ŷ1 − y(∆t)‖2 = ∆t−1

∥∥∥∥∥∥ε+

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)−Aj

)
y0

∥∥∥∥∥∥
2

+O(∆tp).

Assumption

Operations performed in high-precision are exact.

Let us consider the following scenarios (take u to be the low-precision unit roundoff):

1. We have ε = O(u) and we get τ = O(u∆t−1 + ∆tp). Rapid error growth!
2. High-precision vector operations: ε = 0 so τ = O(u+ ∆tp). O(u) limiting accuracy

and loss of convergence.
3. First q ≥ 1 matvecs in high precision. Now ε = 0 and ∆Ak = 0 for k = 1, . . . , q, so
τ = O(u∆tq + ∆tp). Recover q-th order convergence!

Definition: a mixed-precision RK method is q-order-preserving if it converges with
order q ∈ {1, . . . , p} under the above assumption.

Result: Can construct q-order-preserving schemes for any q for linear problems.

8/22

Local error and order preservation

τ = ∆t−1‖ŷ1 − y(∆t)‖2 = ∆t−1

∥∥∥∥∥∥ε+

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)−Aj

)
y0

∥∥∥∥∥∥
2

+O(∆tp).

Assumption

Operations performed in high-precision are exact.

Let us consider the following scenarios (take u to be the low-precision unit roundoff):

1. We have ε = O(u) and we get τ = O(u∆t−1 + ∆tp). Rapid error growth!
2. High-precision vector operations: ε = 0 so τ = O(u+ ∆tp). O(u) limiting accuracy

and loss of convergence.
3. First q ≥ 1 matvecs in high precision. Now ε = 0 and ∆Ak = 0 for k = 1, . . . , q, so
τ = O(u∆tq + ∆tp). Recover q-th order convergence!

Definition: a mixed-precision RK method is q-order-preserving if it converges with
order q ∈ {1, . . . , p} under the above assumption.

Result: Can construct q-order-preserving schemes for any q for linear problems.

8/22

Local error and order preservation

τ = ∆t−1‖ŷ1 − y(∆t)‖2 = ∆t−1

∥∥∥∥∥∥ε+

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)−Aj

)
y0

∥∥∥∥∥∥
2

+O(∆tp).

Assumption

Operations performed in high-precision are exact.

Let us consider the following scenarios (take u to be the low-precision unit roundoff):

1. We have ε = O(u) and we get τ = O(u∆t−1 + ∆tp). Rapid error growth!

2. High-precision vector operations: ε = 0 so τ = O(u+ ∆tp). O(u) limiting accuracy
and loss of convergence.

3. First q ≥ 1 matvecs in high precision. Now ε = 0 and ∆Ak = 0 for k = 1, . . . , q, so
τ = O(u∆tq + ∆tp). Recover q-th order convergence!

Definition: a mixed-precision RK method is q-order-preserving if it converges with
order q ∈ {1, . . . , p} under the above assumption.

Result: Can construct q-order-preserving schemes for any q for linear problems.

8/22

Local error and order preservation

τ = ∆t−1‖ŷ1 − y(∆t)‖2 = ∆t−1

∥∥∥∥∥∥ε+

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)−Aj

)
y0

∥∥∥∥∥∥
2

+O(∆tp).

Assumption

Operations performed in high-precision are exact.

Let us consider the following scenarios (take u to be the low-precision unit roundoff):

1. We have ε = O(u) and we get τ = O(u∆t−1 + ∆tp). Rapid error growth!
2. High-precision vector operations: ε = 0 so τ = O(u+ ∆tp). O(u) limiting accuracy

and loss of convergence.

3. First q ≥ 1 matvecs in high precision. Now ε = 0 and ∆Ak = 0 for k = 1, . . . , q, so
τ = O(u∆tq + ∆tp). Recover q-th order convergence!

Definition: a mixed-precision RK method is q-order-preserving if it converges with
order q ∈ {1, . . . , p} under the above assumption.

Result: Can construct q-order-preserving schemes for any q for linear problems.

8/22

Local error and order preservation

τ = ∆t−1‖ŷ1 − y(∆t)‖2 = ∆t−1

∥∥∥∥∥∥ε+

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)−Aj

)
y0

∥∥∥∥∥∥
2

+O(∆tp).

Assumption

Operations performed in high-precision are exact.

Let us consider the following scenarios (take u to be the low-precision unit roundoff):

1. We have ε = O(u) and we get τ = O(u∆t−1 + ∆tp). Rapid error growth!
2. High-precision vector operations: ε = 0 so τ = O(u+ ∆tp). O(u) limiting accuracy

and loss of convergence.
3. First q ≥ 1 matvecs in high precision. Now ε = 0 and ∆Ak = 0 for k = 1, . . . , q, so
τ = O(u∆tq + ∆tp). Recover q-th order convergence!

Definition: a mixed-precision RK method is q-order-preserving if it converges with
order q ∈ {1, . . . , p} under the above assumption.

Result: Can construct q-order-preserving schemes for any q for linear problems.

8/22

Local error and order preservation

τ = ∆t−1‖ŷ1 − y(∆t)‖2 = ∆t−1

∥∥∥∥∥∥ε+

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)−Aj

)
y0

∥∥∥∥∥∥
2

+O(∆tp).

Assumption

Operations performed in high-precision are exact.

Let us consider the following scenarios (take u to be the low-precision unit roundoff):

1. We have ε = O(u) and we get τ = O(u∆t−1 + ∆tp). Rapid error growth!
2. High-precision vector operations: ε = 0 so τ = O(u+ ∆tp). O(u) limiting accuracy

and loss of convergence.
3. First q ≥ 1 matvecs in high precision. Now ε = 0 and ∆Ak = 0 for k = 1, . . . , q, so
τ = O(u∆tq + ∆tp). Recover q-th order convergence!

Definition: a mixed-precision RK method is q-order-preserving if it converges with
order q ∈ {1, . . . , p} under the above assumption.

Result: Can construct q-order-preserving schemes for any q for linear problems.

8/22

Numerical results - 3D heat equation

10−5 10−4

∆t

10−14

10−12

10−10

10−8

10−6

10−4

10−2

er
ro

r
(L

∞
n
or

m
)

mixed-precision RK4

RK4, q = 0

RK4, q = 1

RK4, q = 2

RK4, q = 3

O(1)

O(∆t1)

O(∆t2)

O(∆t3)

Heat eqn 3D - time discretization error

9/22

3. Mixed-precision RK methods for nonlinear problems

9/22

3.1 Overview

9/22

Nonlinear problems

We want to design order-preserving mixed-precision explicit RK schemes for

y′(t) = f(y(t)), y(0) = y0.

We start as in the linear case by comparing with the exact solution (see [Butcher 2003]):

y(∆t) = y0 + ∆tf(y0) +
1

2
∆t2f ′(y0)f(y0) +O(∆t3),

Our order-preserving schemes must satisfy (e.g., for q ∈ {1, 2}),

ŷn+1 = ŷn + ∆tf(ŷn) +O((1 + u)∆t2), q = 1,

ŷn+1 = ŷn + ∆tf(ŷn) +
1

2
∆t2f ′(ŷn)f(ŷn) +O((1 + u)∆t3), q = 2.

Tentative idea: Use high-precision to ensure that local errors are of the right order.

10/22

Nonlinear problems

We want to design order-preserving mixed-precision explicit RK schemes for

y′(t) = f(y(t)), y(0) = y0.

We start as in the linear case by comparing with the exact solution (see [Butcher 2003]):

y(∆t) = y0 + ∆tf(y0) +
1

2
∆t2f ′(y0)f(y0) +O(∆t3),

Our order-preserving schemes must satisfy (e.g., for q ∈ {1, 2}),

ŷn+1 = ŷn + ∆tf(ŷn) +O((1 + u)∆t2), q = 1,

ŷn+1 = ŷn + ∆tf(ŷn) +
1

2
∆t2f ′(ŷn)f(ŷn) +O((1 + u)∆t3), q = 2.

Tentative idea: Use high-precision to ensure that local errors are of the right order.

10/22

Nonlinear problems

We want to design order-preserving mixed-precision explicit RK schemes for

y′(t) = f(y(t)), y(0) = y0.

We start as in the linear case by comparing with the exact solution (see [Butcher 2003]):

y(∆t) = y0 + ∆tf(y0) +
1

2
∆t2f ′(y0)f(y0) +O(∆t3),

Our order-preserving schemes must satisfy (e.g., for q ∈ {1, 2}),

ŷn+1 = ŷn + ∆tf(ŷn) +O((1 + u)∆t2), q = 1,

ŷn+1 = ŷn + ∆tf(ŷn) +
1

2
∆t2f ′(ŷn)f(ŷn) +O((1 + u)∆t3), q = 2.

Tentative idea: Use high-precision to ensure that local errors are of the right order.

10/22

Nonlinear problems

We want to design order-preserving mixed-precision explicit RK schemes for

y′(t) = f(y(t)), y(0) = y0.

We start as in the linear case by comparing with the exact solution (see [Butcher 2003]):

y(∆t) = y0 + ∆tf(y0) +
1

2
∆t2f ′(y0)f(y0) +O(∆t3),

Our order-preserving schemes must satisfy (e.g., for q ∈ {1, 2}),

ŷn+1 = ŷn + ∆tf(ŷn) +O((1 + u)∆t2), q = 1,

ŷn+1 = ŷn + ∆tf(ŷn) +
1

2
∆t2f ′(ŷn)f(ŷn) +O((1 + u)∆t3), q = 2.

Tentative idea: Use high-precision to ensure that local errors are of the right order.

10/22

Overview

Preserving order conditions is challenging:

• Lack of smoothness. Rounding errors introduce non-smooth noise which affects
order conditions and Taylor expansions.

• Efficiency requirements. The performance gain of reduced-precision computations
must not be outweighed by the cost of matching order conditions.

Our work:

• For nonlinear problems, we can construct efficient q-order-preserving
mixed-precision versions of any explicit RK method for q = 1, 2.

• In our paper, we applied our technique where it can be most useful: explicit
stablised RK schemes for which s� p.

11/22

Overview

Preserving order conditions is challenging:

• Lack of smoothness. Rounding errors introduce non-smooth noise which affects
order conditions and Taylor expansions.

• Efficiency requirements. The performance gain of reduced-precision computations
must not be outweighed by the cost of matching order conditions.

Our work:

• For nonlinear problems, we can construct efficient q-order-preserving
mixed-precision versions of any explicit RK method for q = 1, 2.

• In our paper, we applied our technique where it can be most useful: explicit
stablised RK schemes for which s� p.

11/22

3.2 Mixed-precision Runge-Kutta-Chebyshev methods

11/22

Runge–Kutta–Chebyshev methods1

Function evaluations (i.e., # stages) are traditionally used in RK methods to maximise
accuracy. The idea of explicit stabilised RK methods is to maximise stability instead.

Runge-Kutta-Chebyshev (RKC) methods are designed for parabolic problems and take
Rs(x) to be a Chebyshev polynomial low order (p ≤ 4), but O(s2) stability region.

Absolute stability region of RKC1 with s = 8 vs those of other explicit methods.

Opportunity

Since s� p, can do most stages in reduced precision!

1Refs: [van der Houwen and Sommeijer 1980], many papers by Abdulle and collaborators.

12/22

Runge–Kutta–Chebyshev methods1

Function evaluations (i.e., # stages) are traditionally used in RK methods to maximise
accuracy. The idea of explicit stabilised RK methods is to maximise stability instead.

Runge-Kutta-Chebyshev (RKC) methods are designed for parabolic problems and take
Rs(x) to be a Chebyshev polynomial low order (p ≤ 4), but O(s2) stability region.

Absolute stability region of RKC1 with s = 8 vs those of other explicit methods.

Opportunity

Since s� p, can do most stages in reduced precision!

1Refs: [van der Houwen and Sommeijer 1980], many papers by Abdulle and collaborators.

12/22

Mixed-precision RKC methods

One step of an s-stage RKC scheme in exact arithmetic is given by:
d0 = 0, d1 = µ1∆tf(yn),

dj = νjdj−1 + κjdj−2 + µj∆tf(yn + dj−1) + γj∆tf(yn), j = 2, . . . , s,

yn+1 = yn + ds.

Note: ‖dj‖2 = O(∆t) as ∆t→ 0 for all j.

For a q-order preserving method we need to make sure all rounding errors are O(∆tq+1).

13/22

Mixed-precision RKC methods

One step of a tentative mixed-precision scheme is given by:
d̂0 = 0, d̂1 = µ1∆tf(ŷn),

d̂j = νjd̂j−1 + κjd̂j−2 + µj∆tf̂(ŷn + d̂j−1) + γj∆tf(ŷn), j = 2, . . . , s,

ŷn+1 = ŷn + d̂s.

Note: ‖d̂j‖2 = O(∆t) as ∆t→ 0 for all j.

For a q-order preserving method we need to make sure all rounding errors are O(∆tq+1).

The red term leads to an O(u∆t) error! ⇒ Must rewrite.

13/22

Mixed-precision RKC methods

We can rewrite:
d̂0 = 0, d̂1 = µ1∆tf(ŷn),

d̂j = νjd̂j−1 + κjd̂j−2 + µj∆t∆̂fj−1 + (µj + γj)∆tf(ŷn), j = 2, . . . , s,

ŷn+1 = ŷn + d̂s.

Note: ‖d̂j‖2 = O(∆t) as ∆t→ 0 for all j.

For a q-order preserving method we need to make sure all rounding errors are O(∆tq+1).

The above is now a q-order preserving method as long as

∆̂fj =
(
f(ŷn + d̂j)− f(ŷn)

)
+O(∆tq) = ∆fj +O(∆tq), ∀j.

Note: if ∆̂fj = ∆fj we recover the exact RKC scheme.

13/22

Computing the ∆̂fj terms - RKC1

For RKC1 we want

∆̂fj = ∆fj +O(∆t) =
(
f(ŷn + d̂j)− f(ŷn)

)
+O(∆t), ∀j.

It is sufficient that ∆̂fj = f ′(ŷn)d̂j +O(∆t) since ∆fj = f ′(ŷn)d̂j +O(∆t).

• Since ‖d̂j‖2 = O(∆t), it is sufficient to approximate/evaluate the action of f ′(ŷn)
in low precision. We need strategies that are robust to rounding errors. See next.

• We never need more than one high-precision evaluation of f every s stages.

14/22

Computing the ∆̂fj terms - RKC1

For RKC1 we want

∆̂fj = ∆fj +O(∆t) =
(
f(ŷn + d̂j)− f(ŷn)

)
+O(∆t), ∀j.

It is sufficient that ∆̂fj = f ′(ŷn)d̂j +O(∆t) since ∆fj = f ′(ŷn)d̂j +O(∆t).

• Since ‖d̂j‖2 = O(∆t), it is sufficient to approximate/evaluate the action of f ′(ŷn)
in low precision. We need strategies that are robust to rounding errors. See next.

• We never need more than one high-precision evaluation of f every s stages.

14/22

Computing the ∆̂fj terms - RKC1

For RKC1 we want

∆̂fj = ∆fj +O(∆t) =
(
f(ŷn + d̂j)− f(ŷn)

)
+O(∆t), ∀j.

It is sufficient that ∆̂fj = f ′(ŷn)d̂j +O(∆t) since ∆fj = f ′(ŷn)d̂j +O(∆t).

• Since ‖d̂j‖2 = O(∆t), it is sufficient to approximate/evaluate the action of f ′(ŷn)
in low precision. We need strategies that are robust to rounding errors. See next.

• We never need more than one high-precision evaluation of f every s stages.

14/22

Available strategies for efficient Jacobian evaluations/approximations

• Cheap analytical expression.

• Symbolic differentiation.

• Automatic differentiation.

• Noise-aware finite differences:

∆̂fj = δ−1
(
f̂(ŷn + δd̂j)− f(ŷn)

)
= f ′(ŷ)d̂j +O(δ−1u+ δ‖d̂j‖22).

Taking δ = 1 is what is typically done, but leads to an O(u) error!

However, since ‖d̂j‖2 = O(∆t), we can take δ = O(
√
u∆t−1) to obtain

δ−1
(
f̂(ŷn + δd̂j)− f(ŷn)

)
= f ′(ŷn)d̂j +O(

√
u∆t).

15/22

Available strategies for efficient Jacobian evaluations/approximations

• Cheap analytical expression.

• Symbolic differentiation.

• Automatic differentiation.

• Noise-aware finite differences:

∆̂fj = δ−1
(
f̂(ŷn + δd̂j)− f(ŷn)

)
= f ′(ŷ)d̂j +O(δ−1u+ δ‖d̂j‖22).

Taking δ = 1 is what is typically done, but leads to an O(u) error!

However, since ‖d̂j‖2 = O(∆t), we can take δ = O(
√
u∆t−1) to obtain

δ−1
(
f̂(ŷn + δd̂j)− f(ŷn)

)
= f ′(ŷn)d̂j +O(

√
u∆t).

15/22

Available strategies for efficient Jacobian evaluations/approximations

• Cheap analytical expression.

• Symbolic differentiation.

• Automatic differentiation.

• Noise-aware finite differences:

∆̂fj = δ−1
(
f̂(ŷn + δd̂j)− f(ŷn)

)
= f ′(ŷ)d̂j +O(δ−1u+ δ‖d̂j‖22).

Taking δ = 1 is what is typically done, but leads to an O(u) error!

However, since ‖d̂j‖2 = O(∆t), we can take δ = O(
√
u∆t−1) to obtain

δ−1
(
f̂(ŷn + δd̂j)− f(ŷn)

)
= f ′(ŷn)d̂j +O(

√
u∆t).

15/22

Available strategies for efficient Jacobian evaluations/approximations

• Cheap analytical expression.

• Symbolic differentiation.

• Automatic differentiation.

• Noise-aware finite differences:

∆̂fj = δ−1
(
f̂(ŷn + δd̂j)− f(ŷn)

)
= f ′(ŷ)d̂j +O(δ−1u+ δ‖d̂j‖22).

Taking δ = 1 is what is typically done, but leads to an O(u) error!

However, since ‖d̂j‖2 = O(∆t), we can take δ = O(
√
u∆t−1) to obtain

δ−1
(
f̂(ŷn + δd̂j)− f(ŷn)

)
= f ′(ŷn)d̂j +O(

√
u∆t).

15/22

Computing the ∆̂fj terms - RKC2
For RKC2 we want

∆̂fj = ∆fj +O(∆t2) =
(
f(ŷn + d̂j)− f(ŷn)

)
+O(∆t2), ∀j.

Let v̂j = d̂j − cj∆tf(yn) = O(∆t2). We compute a suitable ∆̂fj as

∆̂fj = ∆̂1fj + ∆̂2fj = f̂ ′(ŷn)v̂j + cj∆tf
′(ŷn)f(ŷn).

We prove that ∆̂fj = ∆fj +O(∆t2). Again various evaluation strategies available and
we never need more than one high-precision evaluation of f and f ′ every s stages.

Warning: This method is indeed 2nd-order accurate, yet it is unstable for s, ∆t large!

Solution: set ∆̂fj =

{
∆̂1fj + ∆̂2fj , if ‖v̂j‖2 ≤ ‖d̂j‖2,
∆̃fj , if ‖v̂j‖2 > ‖d̂j‖2,

where ∆̃fj is the same 1st-order approximation we used for RKC1.

This modified RKC2 scheme is now both stable and 2nd-order accurate!

16/22

Computing the ∆̂fj terms - RKC2
For RKC2 we want

∆̂fj = ∆fj +O(∆t2) =
(
f(ŷn + d̂j)− f(ŷn)

)
+O(∆t2), ∀j.

Let v̂j = d̂j − cj∆tf(yn) = O(∆t2). We compute a suitable ∆̂fj as

∆̂fj = ∆̂1fj + ∆̂2fj = f̂ ′(ŷn)v̂j + cj∆tf
′(ŷn)f(ŷn).

We prove that ∆̂fj = ∆fj +O(∆t2). Again various evaluation strategies available and
we never need more than one high-precision evaluation of f and f ′ every s stages.

Warning: This method is indeed 2nd-order accurate, yet it is unstable for s, ∆t large!

Solution: set ∆̂fj =

{
∆̂1fj + ∆̂2fj , if ‖v̂j‖2 ≤ ‖d̂j‖2,
∆̃fj , if ‖v̂j‖2 > ‖d̂j‖2,

where ∆̃fj is the same 1st-order approximation we used for RKC1.

This modified RKC2 scheme is now both stable and 2nd-order accurate!

16/22

Computing the ∆̂fj terms - RKC2
For RKC2 we want

∆̂fj = ∆fj +O(∆t2) =
(
f(ŷn + d̂j)− f(ŷn)

)
+O(∆t2), ∀j.

Let v̂j = d̂j − cj∆tf(yn) = O(∆t2). We compute a suitable ∆̂fj as

∆̂fj = ∆̂1fj + ∆̂2fj = f̂ ′(ŷn)v̂j + cj∆tf
′(ŷn)f(ŷn).

We prove that ∆̂fj = ∆fj +O(∆t2). Again various evaluation strategies available and
we never need more than one high-precision evaluation of f and f ′ every s stages.

Warning: This method is indeed 2nd-order accurate, yet it is unstable for s, ∆t large!

Solution: set ∆̂fj =

{
∆̂1fj + ∆̂2fj , if ‖v̂j‖2 ≤ ‖d̂j‖2,
∆̃fj , if ‖v̂j‖2 > ‖d̂j‖2,

where ∆̃fj is the same 1st-order approximation we used for RKC1.

This modified RKC2 scheme is now both stable and 2nd-order accurate!

16/22

Computing the ∆̂fj terms - RKC2
For RKC2 we want

∆̂fj = ∆fj +O(∆t2) =
(
f(ŷn + d̂j)− f(ŷn)

)
+O(∆t2), ∀j.

Let v̂j = d̂j − cj∆tf(yn) = O(∆t2). We compute a suitable ∆̂fj as

∆̂fj = ∆̂1fj + ∆̂2fj = f̂ ′(ŷn)v̂j + cj∆tf
′(ŷn)f(ŷn).

We prove that ∆̂fj = ∆fj +O(∆t2). Again various evaluation strategies available and
we never need more than one high-precision evaluation of f and f ′ every s stages.

Warning: This method is indeed 2nd-order accurate, yet it is unstable for s, ∆t large!

Solution: set ∆̂fj =

{
∆̂1fj + ∆̂2fj , if ‖v̂j‖2 ≤ ‖d̂j‖2,
∆̃fj , if ‖v̂j‖2 > ‖d̂j‖2,

where ∆̃fj is the same 1st-order approximation we used for RKC1.

This modified RKC2 scheme is now both stable and 2nd-order accurate!

16/22

Convergence, nonlinear stability, and worst-case error behaviour

Theorem (C. and RdS 2022)

Our order-p mixed-precision RKC schemes are p-order preserving if f is of class C2.
Furthermore, let en = ‖ŷn − yn‖2, then there exist constants C1, C2 > 0 such that, for
all n and for all ∆t for which the exact method is stable,

en+1 ≤ en + u∆tmin(C1∆t
p, C2).

• New theory. First stability result for mixed-precision RK methods and first
convergence result for explicit mixed-precision RK methods. RKC theory updated.

• No classical stability result The theory allows the error to grow. We can prove
en+1 ≤ en under stringent conditions. Methods are stable in practice.

• A challenging theory. Rounding errors are non-smooth and destroy spectral
relations. This forbids any analysis based on eigenvalues or smoothness.

17/22

Convergence, nonlinear stability, and worst-case error behaviour

Theorem (C. and RdS 2022)

Our order-p mixed-precision RKC schemes are p-order preserving if f is of class C2.
Furthermore, let en = ‖ŷn − yn‖2, then there exist constants C1, C2 > 0 such that, for
all n and for all ∆t for which the exact method is stable,

en+1 ≤ en + u∆tmin(C1∆t
p, C2).

• New theory. First stability result for mixed-precision RK methods and first
convergence result for explicit mixed-precision RK methods. RKC theory updated.

• No classical stability result The theory allows the error to grow. We can prove
en+1 ≤ en under stringent conditions. Methods are stable in practice.

• A challenging theory. Rounding errors are non-smooth and destroy spectral
relations. This forbids any analysis based on eigenvalues or smoothness.

17/22

Numerical results - stability (2D heat eqn)

0 20 40 60
n

10−5

10−4

10−3

10−2

10−1

100
||ŷ

n
|| 2

/||
y

0 ||
2

RKC1

s = 32

s = 64

s = 128

s = 256

s = 512

0 50 100 150 200
n

10−13

10−11

10−9

10−7

10−5

10−3

10−1

||ŷ
n
|| 2

/||
y

0 ||
2

RKC2

s = 32

s = 64

s = 128

s = 256

s = 512

Diffusion coefficient = 50, ∆x = 4/s, ∆t = s2‖A‖−1
2 = 4s/50.

18/22

Numerical results - time convergence
1D Brussellator model for chemical autocatalytic reactions (with Dirichlet BCs):{

u̇ = α∆ u+ u2 v−(b+ 1) u+a
v̇ = α∆ v− u2 v +b u

10−2

∆t

10−3

10−2

10−1

100

101

102

re
la

ti
ve

er
ro

r
(L

∞
n
or

m
)

RKC1 (s = 16)

double

mixed

low

O(∆t)

Brussellator - time discretization error

10−3 10−2

∆t

10−6

10−4

10−2

100

102

re
la

ti
ve

er
ro

r
(L

∞
n
or

m
)

RKC2 (s = 16)

double

mixed

low

O(∆t2)

Brussellator - time discretization error

19/22

Numerical results - space-time convergence
Nonlinear diffusion model, 1D 4-Laplace diffusion operator (with Dirichlet BCs):

u̇ = ∇ · (‖∇ u ‖22∇ u) + f

10−6 10−5 10−4

∆x

10−6

10−5

10−4

10−3

10−2

10−1

re
la

ti
ve

to
ta

l
er

ro
r

(L
∞

n
or

m
)

RKC1 (s = 16)

double

OP mixed

std. mixed

O(∆t)

10−4 10−3

∆x

10−6

10−5

10−4

10−3

10−2

10−1

re
la

ti
ve

to
ta

l
er

ro
r

(L
∞

n
or

m
)

RKC2 (smax = 256)

double

OP mixed

std. mixed

O(∆t2)

20/22

4. Conclusions

20/22

Outlook

To sum up

• Mixed-precision algorithms require a careful implementation, but can bring
significant memory, cost, and energy savings.

• We can make RKC methods as accurate as their high precision equivalent and
almost as cheap as their fully low-precision counterpart.

• Our work extends to multirate RKC, and to any RK method for q = 1, 2.

• For order-preserving mixed-precision implicit RK methods, see, e.g., [Grant 2022].

Future research directions

• Hyperbolic PDE solvers, more reduced-/mixed-precision climate simulation,
multilevel Monte Carlo methods.

• Expected speedups of our RKC schemes are 75% on CPUs and 94% on GPUs. It
would be nice to verify this on hardware that supports half-precision computations.

21/22

Thank you for listening! If you want to know more...

Papers, slides, and more info at: https://croci.github.io

References
[1] M. Croci and G. Rosilho de Souza. Mixed-precision explicit stabilized Runge–Kutta methods for single-and

multi-scale differential equations. Journal of Computational Physics, 464:111349, 2022.

[2] N. J. Higham and T. Mary. Mixed precision algorithms in numerical linear algebra. Acta Numerica, 31:
347–414, 2022.

[3] M. Klöwer, S. Hatfield, M. Croci, P. D. Düben, and T. N. Palmer. Fluid simulations accelerated with 16
bits: Approaching 4x speedup on A64FX by squeezing ShallowWaters.jl into Float16. Journal of Advances in
Modeling Earth Systems, 2021.

[4] A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, M. Gates, N. J. Higham,
X. S. Li, et al. A survey of numerical linear algebra methods utilizing mixed-precision arithmetic. The
International Journal of High Performance Computing Applications, 35(4):344–369, 2021.

[5] Z. J. Grant. Perturbed Runge–Kutta methods for mixed precision applications. Journal of Scientific Computing,
92(1):6, 2022.

[6] J. C. Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons, 2003.

[7] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.

[8] A. Abdulle and A. A. Medovikov. Second order Chebyshev methods based on orthogonal polynomials. Nu-
merische Mathematik, 90:1–18, 2001.

[9] J. G. Verwer, W. H. Hundsdorfer, and B. P. Sommeijer. Convergence properties of the Runge-Kutta-Chebyshev
method. Numerische Mathematik, 57:157–178, 1990.

[10] P. J. van Der Houwen and B. P. Sommeijer. On the internal stability of explicit, m-stage Runge-Kutta methods
for large m-values. ZAMM - Journal of Applied Mathematics and Mechanics, 60(10):479–485, 1980.

22/22

https://croci.github.io

APPENDIX

1/8

Expected computational savings

Due to the limited availability of CPUs supporting half-precision computations, we rely
on in-software emulation ⇒ CPU timings not available.

Nevertheless, the mixed-precision schemes should be cheaper by roughly a factor

% =
sr − ((s− q) + qr)

sr
, where r =

Cost of RHS evals in high

Cost of RHS evals in low
.

A scheme in double/half yields up to r = 4 on CPU and up to r = 16 on GPUs.

• For RK4 this leads to 56% (q = 1) and 40% (q = 2) savings on CPUs.

• Stabilised methods have lots of stages and low order: can essentially take s→∞,
giving %→ 1− 1/r. E.g. this leads to a 75% speedup on CPUs (94% on GPUs).

Note: We have ignored additional savings related to memory/caching effects.

2/8

Stabilising RKC2

Recap: we computed ∆̂fj = ∆̂1fj + ∆̂2fj , where ∆̂1fj = f ′(. . .)v̂j = O(∆t2).

The culprit is the v̂j term: for small ∆t this is small and ensures 2nd order convergence,
but for large ∆t it becomes large and leads to instability!

To fix this, consider the 1-order preserving evaluation of ∆̂fj (same as for RKC1):

∆̃fj = f ′j(ŷj)d̂j +O(∆t).

This leads to a stable scheme for large ∆t, but is only first-order accurate for small ∆t.

Solution: set ∆̂fj =

{
∆̂1fj + ∆̂2fj , if ‖v̂j‖2 ≤ ‖d̂j‖2,
∆̃fj , if ‖v̂j‖2 > ‖d̂j‖2.

This leads to a 2nd-order and stable method.

3/8

Stabilising RKC2

Recap: we computed ∆̂fj = ∆̂1fj + ∆̂2fj , where ∆̂1fj = f ′(. . .)v̂j = O(∆t2).

The culprit is the v̂j term: for small ∆t this is small and ensures 2nd order convergence,
but for large ∆t it becomes large and leads to instability!

To fix this, consider the 1-order preserving evaluation of ∆̂fj (same as for RKC1):

∆̃fj = f ′j(ŷj)d̂j +O(∆t).

This leads to a stable scheme for large ∆t, but is only first-order accurate for small ∆t.

Solution: set ∆̂fj =

{
∆̂1fj + ∆̂2fj , if ‖v̂j‖2 ≤ ‖d̂j‖2,
∆̃fj , if ‖v̂j‖2 > ‖d̂j‖2.

This leads to a 2nd-order and stable method.

3/8

Stabilising RKC2

Recap: we computed ∆̂fj = ∆̂1fj + ∆̂2fj , where ∆̂1fj = f ′(. . .)v̂j = O(∆t2).

The culprit is the v̂j term: for small ∆t this is small and ensures 2nd order convergence,
but for large ∆t it becomes large and leads to instability!

To fix this, consider the 1-order preserving evaluation of ∆̂fj (same as for RKC1):

∆̃fj = f ′j(ŷj)d̂j +O(∆t).

This leads to a stable scheme for large ∆t, but is only first-order accurate for small ∆t.

Solution: set ∆̂fj =

{
∆̂1fj + ∆̂2fj , if ‖v̂j‖2 ≤ ‖d̂j‖2,
∆̃fj , if ‖v̂j‖2 > ‖d̂j‖2.

This leads to a 2nd-order and stable method.

3/8

Convergence and nonlinear stability

Theorem (C. and RdS 2022)

1) Our order-p mixed-precision RKC schemes are p-order preserving if f is of class C2.

2) Furthermore, if there exist c1, c2 > 0 independent from ∆t such that, for all j, n,

(i) ‖∆̂fj −∆fj‖2 ≤ c1‖ŷn‖2,
(ii) ‖d̂j‖2 ≤ c2‖ŷn‖2,

then there also exist constants C1, C2 > 0 such that, for all n and for all ∆t for which
the exact method is stable, the following non-asymptotic bound holds:

‖ŷn+1 − yn+1‖2 ≤ ‖ŷn − yn‖2 + ∆tmin(C1∆t
p, C2)

Note: (i) and (ii) control the amplification of rounding errors in the non-asymptotic
regime. Both conditions are automatically satisfied if either ∆t→ 0 or if f is linear.

4/8

Convergence and nonlinear stability

Theorem (C. and RdS 2022)

1) Our order-p mixed-precision RKC schemes are p-order preserving if f is of class C2.

2) Furthermore, if there exist c1, c2 > 0 independent from ∆t such that, for all j, n,

(i) ‖∆̂fj −∆fj‖2 ≤ c1‖ŷn‖2,
(ii) ‖d̂j‖2 ≤ c2‖ŷn‖2,

then there also exist constants C1, C2 > 0 such that, for all n and for all ∆t for which
the exact method is stable, the following non-asymptotic bound holds:

‖ŷn+1 − yn+1‖2 ≤ ‖ŷn − yn‖2 + ∆tmin(C1∆t
p, C2)

Note: (i) and (ii) control the amplification of rounding errors in the non-asymptotic
regime. Both conditions are automatically satisfied if either ∆t→ 0 or if f is linear.

4/8

Internal error propagation and linear stability

Theorem (C. and RdS 2022)

Let f(y) = Ay with A being a symmetric npd matrix. Then, Conditions (i)-(ii) in the
previous theorem are automatically satisfied. Furthermore, our order-p schemes satisfy

ŷn+1 = Rp
s(∆tA)ŷn + rps(ŷn),

where rps contains the rounding errors introduced at time step n, and is bounded by

‖rps‖2 ≤ Ψp(∆t, A)
(
(1 + C∆tu)s−1 − 1

)
‖ŷn‖2,

where 0 ≤ Ψp(∆t, A) ≤ 2, Ψp(∆t, A) = O(∆tp), and C > 0.

5/8

Linear stability result - some comments

• Updated RKC theory. The bounds account for rounding errors propagating from
previous stages, an overlooked phenomenon in RKC theory [Verwer et al. 1990].

• No classical stability proof. Our theory allows the error to grow for large ∆t since

‖ŷn+1 − yn+1‖2 ≤ ‖Rp
s(∆tA)‖2‖ŷn − yn‖2 + ‖rps(ŷn)‖2 ≤ (1 + α)‖ŷn − yn‖2,

where α > 0. We can prove no error growth under stringent conditions on κ(A).

• Rounding errors pose new challenges: they are non-smooth and destroy any
spectral relation between iterates. This forbids any analysis based on eigenvalues or
smoothness and results in a pessimistic worst-case bound.

• Methods are stable in practice, independently from κ(A). The worst-case
behaviour is not observed.

6/8

Numerical results - RKC2 stability (2D nonlinear heat eqn, half precision)

0 50 100 150 200 250
n

10−12

10−10

10−8

10−6

10−4

10−2

100

102
||ŷ

n
|| 2

/||
y

0 ||
2

RKC2

s = 8

s = 16

s = 32

s = 48

s = 64

0 50 100 150 200
n

10−13

10−11

10−9

10−7

10−5

10−3

10−1

||ŷ
n
|| 2

/||
y

0 ||
2

RKC2

s = 32

s = 64

s = 128

s = 256

s = 512

Behaviour of RKC2 numerical solution without (left) and with (right) stabilization.

7/8

Numerical results - error vs number of stages (4-Laplace diffusion)

8 16 32 64 128
s

10−7

10−5

10−3

10−1

101

103

er
ro

r
ra

ti
o

(L
∞

n
or

m
)

RKC1 (bfloat16)

OP mixed std. mixed

8 16 32 64 128
s

10−6

10−4

10−2

100

102

104

106

108

er
ro

r
ra

ti
o

(L
∞

n
or

m
)

RKC2 (bfloat16)

OP mixed std. mixed

error ratio = rounding error / time-discretization error.

8/8

	Introduction
	Mixed-precision RK methods for linear problems
	Mixed-precision RK methods for nonlinear problems
	Overview
	Mixed-precision Runge-Kutta-Chebyshev methods

	Conclusions
	References
	Appendix

