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1. Introduction
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Mixed-precision algorithms
Mixed-precision algorithms combine low- and high-precision computations in order to




Example application: Weather and climate forecasting [Klower et al. 2022]

Float64 simulation a

Shallow-water eqs for 2D oceanic flow:

v+v-Vo+ 2 xv= —-Vn+ A2y —v + F, Float16 simulation : b
N+ V- (vh)=0, ;
¢+v-Vg=-7(q—qo).




Common floating-point formats

Format unit roundoff u range
bfloat16 (half) 278 (=~ 2.5 digits) ~ 10%38
fp16 (half) 271 (~ 3.5 digits) =~ 1045
fp32 (single) 272 (x~ 7 digits)  ~ 10538
fp64 (double) 2793 (= 15 digits) ~ 105398

Better performance: 16-bits computations are 4x faster than double precision on
CPUs and 16x faster on GPUs. Energy-/memory-efficiency gains are also comparable.

All major chip manufacturers (e.g., AMD, ARM, NVIDIA, Intel, ...) have commercialized
chips (CPUs, GPUs, TPUs, FPGAs, ...) supporting half-precision computations.

Note: today we employ double/bfloatl6 via software emulation (no timings available).
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Today's focus: Mixed-precision explicit Runge—Kutta methods

Our work: design mixed-precision explicit Runge—Kutta schemes for solving:
y'(t) = fly(t), y(0)=uyo,

Evaluate f in low-precision as much as possible without affecting accuracy or stability.




2. Mixed-precision RK methods for linear problems
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Linear problems

We start by considering linear problems in the form:

y'(t) = Ay(t), y(0) = yo.



Linear problems

We start by considering linear problems in the form:

y'(t) = Ay(t), y(0) = yo.

Required for the analysis: A rounding error bound for matrix-vector products,

Theorem (Lemma 6.6 in [Higham 2002])

Let A € R™*"™. Barring underflow/overflow, there exists ¢ > 0 depending on m s.t.

Az = (A+ AAz, with [|AA]s < cul|A]2 = O(w).



Linear problems - local error

Consider the exact solution at ¢t = At and its corresponding s-stage, p-th order RK
approximation:

L (AtAY
y(At) = exp(AtA)yo = Z #yo,
=0 7
p .
AtA)I
y1 = Ro(A)yo =3 (j!)yo + O(APHY),

<
I
o

Giving a local error 7 = At7!||ly(At) — y1]l2 = O(AP).



Linear problems - local error

Consider the exact solution at ¢t = At and its corresponding s-stage, p-th order RK
approximation:

=, (AtA)
y(At) = exp(AtA)yo = Z #yg,
=0
p
AtA
w = Ra(Ao = 3" BA L oam),

<
I
o

Giving a local error 7 = At7!||ly(At) — y1]l2 = O(AP).
Evaluating the scheme in finite precision yields:

p i J
91 = Rs(A)yo =€+ yo + Z (H (A+ AAL) ) Yo + O(APHY).
j=1 : k=1



Local error and order preservation

P J
€+ZAt] <H A+AAk )y()
k=1

= At7|g1 — y(At)l2 = At~ —
= 7

+O(AP).
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Local error and order preservation

p i J
RN _ A H )
T=At 1Hy1—y(At)Hg:At 1 €+z 4! ( (A-I-AAk)—AJ) yo|| + O(AtP).

j=1 k=1

2

Operations performed in high-precision are exact.




Local error and order preservation

p i J
RN _ A H )
T=At 1Hy1 —y(At)||2 = At e+ z 4! ( (A+ AAg) — AJ> yo|| + O(AtP).

j=1 k=1

2

Assumption

Operations performed in high-precision are exact.

Let us consider the following scenarios (take u to be the low-precision unit roundoff):
1. We have ¢ = O(u) and we get 7 = O(uAt~! + AtP). Rapid error growth!
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Assumption

Operations performed in high-precision are exact.
Let us consider the following scenarios (take u to be the low-precision unit roundoff):
1. We have ¢ = O(u) and we get 7 = O(uAt~! + AtP). Rapid error growth!
2. High-precision vector operations: ¢ = 0 so 7 = O(u + At?). O(u) limiting accuracy
and loss of convergence.
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Operations performed in high-precision are exact.

Let us consider the following scenarios (take u to be the low-precision unit roundoff):
1. We have ¢ = O(u) and we get 7 = O(uAt~! + AtP). Rapid error growth!
2. High-precision vector operations: ¢ = 0 so 7 = O(u + At?). O(u) limiting accuracy
and loss of convergence.
3. First ¢ > 1 matvecs in high precision. Now ¢ =0 and AAy =0for k=1,...
= O(uAt? + AtP). Recover g-th order convergence!
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Local error and order preservation

p i J
At?
= A g —y(At)lo = A e+ = (H A+ AAy) — A ) yo|| + O(A).

J=1 k=1 9

Assumption

Operations performed in high-precision are exact.

Let us consider the following scenarios (take u to be the low-precision unit roundoff):
1. We have ¢ = O(u) and we get 7 = O(uAt~! + AtP). Rapid error growth!
2. High-precision vector operations: ¢ = 0 so 7 = O(u + At?). O(u) limiting accuracy
and loss of convergence.
3. First ¢ > 1 matvecs in high precision. Now ¢ =0 and AAy =0fork=1,...,q, so
= O(uAt? + AtP). Recover g-th order convergence!

Definition: a mixed-precision RK method is g-order-preserving if it converges with
order ¢ € {1,...,p} under the above assumption.

Result: Can construct g-order-preserving schemes for any ¢ for linear problems.



Numerical results - 3D heat equation
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3. Mixed-precision RK methods for nonlinear problems



3.1 Overview



Nonlinear problems

We want to design order-preserving mixed-precision explicit RK schemes for

y'(t)=fy(t), v0)=yo.
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y'(t)=fy®), vy0)=yo.
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Nonlinear problems

We want to design order-preserving mixed-precision explicit RK schemes for
y'(t)=fy®), vy0)=yo.
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1
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Nonlinear problems

We want to design order-preserving mixed-precision explicit RK schemes for
y'(t)=fy®), vy0)=yo.
We start as in the linear case by comparing with the exact solution (see [Butcher 2003]):

1
y(At) = yo + Atf(yo) + 5 A F (y0) fwo) + O(A),
Our order-preserving schemes must satisfy (e.g., for g € {1,2}),
Uni1 = Yo + ALF () + O((1+w)AL), ¢=1,

Gt = G+ ALF () + S APF G F(G) + 00 +0)AR),  g=2

Tentative idea: Use high-precision to ensure that local errors are of the right order.



Overview

Preserving order conditions is challenging:

e Lack of smoothness. Rounding errors introduce non-smooth noise which affects
order conditions and Taylor expansions.

e Efficiency requirements. The performance gain of reduced-precision computations
must not be outweighed by the cost of matching order conditions.
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Overview

Preserving order conditions is challenging:

e Lack of smoothness. Rounding errors introduce non-smooth noise which affects
order conditions and Taylor expansions.

e Efficiency requirements. The performance gain of reduced-precision computations
must not be outweighed by the cost of matching order conditions.

Our work:

® For nonlinear problems, we can construct efficient g-order-preserving
mixed-precision versions of any explicit RK method for ¢ = 1, 2.

® In our paper, we applied our technique where it can be most useful: explicit
stablised RK schemes for which s > p.
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3.2 Mixed-precision Runge-Kutta-Chebyshev methods
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Runge—Kutta—Chebyshev methods!

Function evaluations (i.e., # stages) are traditionally used in RK methods to maximise
accuracy. The idea of explicit stabilised RK methods is to maximise stability instead.

Runge-Kutta-Chebyshev (RKC) methods are designed for parabolic problems and take
Rs(x) to be a Chebyshev polynomial ~ low order (p < 4), but O(s?) stability region.

1 1 1 | 1 1
-120 -100 -80 -60 -40 -20 0
T

Absolute stability region of RKC1 with s = 8 vs those of other explicit methods.

'Refs: [van der Houwen and Sommeijer 1980], many papers by Abdulle and collaborators.
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Runge—Kutta—Chebyshev methods!

Function evaluations (i.e., # stages) are traditionally used in RK methods to maximise
accuracy. The idea of explicit stabilised RK methods is to maximise stability instead.

Runge-Kutta-Chebyshev (RKC) methods are designed for parabolic problems and take
Rs(x) to be a Chebyshev polynomial ~ low order (p < 4), but O(s?) stability region.

1 1 1
-80 -60 -40 -20 0

x
Absolute stability region of RKC1 with s = 8 vs those of other explicit methods.

! !
-120 -100

Opportunity

Since s > p, can do most stages in reduced precision!

'Refs: [van der Houwen and Sommeijer 1980], many papers by Abdulle and collaborators.
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Mixed-precision RKC methods

One step of an s-stage RKC scheme in exact arithmetic is given by:

dO = 07 dl = MlAtf(yn)v
dj = vjd; 1 + kjdj_o + piAtf(yn +dj_1) + v ALf(yn), j=2,...,5,
Yn+1 = Yn + ds-

Note: ||d;||> = O(At) as At — 0 for all j.

For a g-order preserving method we need to make sure all rounding errors are O(At4t1).



Mixed-precision RKC methods

One step of a tentative mixed-precision scheme is given by:

dO =0, dl = MlAtf(gn)a
dj = vjdj_1 + rjdj—z + AL (G + djr) + AL (Gn), G=2,-- 5,
'gn—l-l = 'gn + ds-

Note: ||d;[2 = O(At) as At — 0 for all j.

For a g-order preserving method we need to make sure all rounding errors are O(At4+1).

The red term leads to an O(uAt) error! = Must rewrite.



Mixed-precision RKC methods

We can rewrite:

do = 07 Cil = /.LlAtf(’gn),
dj = VjCij—l + /fjdj—2 + MjAtAfj—l +(puj +9)Atf(Un), J=2,...,5,
'gn—&-l — 'gn + Cis-

Note: ||d;[2 = O(At) as At — 0 for all j.

For a g-order preserving method we need to make sure all rounding errors are O(At4+1).

The above is now a g-order preserving method as long as
Aty = (£ +dy) = F@n)) + O(AL) = Af; +O(AM), V.

Note: if Afj = Af; we recover the exact RKC scheme.



Computing the Afj terms - RKC1

For RKC1 we want

Aty = Af;+0(A) = (F@a+dj) = FGa)) + O(AD), Vi
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Computing the Afj terms - RKC1

For RKC1 we want

Aty = Af;+0(A) = (F@a+dj) = FGa)) + O(AD), Vi

It is sufficient that Af; = f'(9n)d; + O(At) since Af; = f'(9n)d; + O(At).
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Computing the Afj terms - RKC1

For RKC1 we want

Afj = AF;+ 0 = (f(@a+dj) = F(Gn)) + O(AL), V).

It is sufficient that Af; = f'(9n)d; + O(At) since Af; = f'(9n)d; + O(At).

e Since ||d;|j2 = O(At), it is sufficient to approximate/evaluate the action of f'(g,)
in low precision. We need strategies that are robust to rounding errors. See next.

® \We never need more than one high-precision evaluation of f every s stages.
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Available strategies for efficient Jacobian evaluations/approximations
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Available strategies for efficient Jacobian evaluations/approximations

® Cheap analytical expression.
e Symbolic differentiation.

e Automatic differentiation.



Available strategies for efficient Jacobian evaluations/approximations

® Cheap analytical expression.

Symbolic differentiation.

Automatic differentiation.

® Noise-aware finite differences:
Afy =07 (F@a+0d)) — F(gn) = £@)d; + 0@ u+6d; )

Taking 6 = 1 is what is typically done, but leads to an O(u) error!



Available strategies for efficient Jacobian evaluations/approximations

® Cheap analytical expression.

Symbolic differentiation.

Automatic differentiation.

® Noise-aware finite differences:
Afy =07 (F@a+0d)) — F(gn) = £@)d; + 0@ u+6d; )

Taking 6 = 1 is what is typically done, but leads to an O(u) error!
However, since ||d;|la = O(At), we can take § = O(y/uAt™!) to obtain

57 (£ (@ +6d5) — F(3a)) = £ (@n)d; + O(Valt),



Computing the Afj terms - RKC2
For RKC2 we want

Afy = Af;+0(A2) = (F@Ga+dy) — F(Gn)) + O(AR), V).



Computing the Afj terms - RKC2
For RKC2 we want

~

Afy = Af;+0(A2) = (F@Ga+dy) — F(Gn)) + O(AR), V).
Let v; = cij — ¢;jAtf(y,) = O(At?). We compute a suitable Af; as
Af; = Aifi+ Doy = £ (n)0; + AL (G0) f (Gn)-

We prove that Afj = Af; + O(At?). Again various evaluation strategies available and
we never need more than one high-precision evaluation of f and f’ every s stages.
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Warning: This method is indeed 2nd-order accurate, yet it is unstable for s, At large!



Computing the Afj terms - RKC2
For RKC2 we want

Afy = Af;+0(A2) = (F@Ga+dy) — F(Gn)) + O(AR), V).
Let v; = cij — ¢;jAtf(y,) = O(At?). We compute a suitable Af; as
Af; = Aifi+ Doy = £ (n)0; + AL (G0) f (Gn)-

We prove that Afj = Af; + O(At?). Again various evaluation strategies available and
we never need more than one high-precision evaluation of f and f’ every s stages.

Warning: This method is indeed 2nd-order accurate, yet it is unstable for s, At large!

Arfj+ Aoy, if 0512 < |ldjl2,

Solution: set Af; = { ~ o -
’ Afj, if [[05]]2 > [|d;|l2,

where Afj is the same 1st-order approximation we used for RKC1.

This modified RKC2 scheme is now both stable and 2nd-order accurate!



Convergence, nonlinear stability, and worst-case error behaviour

Theorem (C. and RdS 2022)

Our order-p mixed-precision RKC schemes are p-order preserving if f is of class C2.
Furthermore, let e,, = ||gn, — yn||2, then there exist constants Cy,Co > 0 such that, for
all n and for all At for which the exact method is stable,

ent1 < e + uAt min(C1 AP, Cy).



Convergence, nonlinear stability, and worst-case error behaviour

Theorem (C. and RdS 2022)

Our order-p mixed-precision RKC schemes are p-order preserving if f is of class C2.
Furthermore, let e,, = ||gn, — yn||2, then there exist constants Cy,Co > 0 such that, for
all n and for all At for which the exact method is stable,

ent1 < e + uAt min(C1 AP, Cy).
® New theory. First stability result for mixed-precision RK methods and first
convergence result for explicit mixed-precision RK methods. RKC theory updated.

® No classical stability result The theory allows the error to grow. We can prove
ent+1 < e, under stringent conditions. Methods are stable in practice.

¢ A challenging theory. Rounding errors are non-smooth and destroy spectral
relations. This forbids any analysis based on eigenvalues or smoothness.



Numerical results - stability (2D heat eqn)
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Numerical results - time convergence
1D Brussellator model for chemical autocatalytic reactions (with Dirichlet BCs):

t=cacAu+u’v—(b+1)u+ta
v=aAv—u’v+bu

104 I N 107 e

10!

10°

102

relative error (L° norm)

10~

relative error (L norm)

RKCI (s = 16) , RKC2 (s = 16)
1073 10-0
-~ double ke low =~ double ke Jow
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1072 1073 1072
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Numerical results - space-time convergence
Nonlinear diffusion model, 1D 4-Laplace diffusion operator (with Dirichlet BCs):

u=V-([Vul3Vu)+f
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4. Conclusions



Outlook

® Mixed-precision algorithms require a careful implementation, but can bring
significant memory, cost, and energy savings.

® We can make RKC methods as accurate as their high precision equivalent and
almost as cheap as their fully low-precision counterpart.

® Qur work extends to multirate RKC, and to any RK method for ¢ = 1, 2.

® For order-preserving mixed-precision implicit RK methods, see, e.g., [Grant 2022].

Future research directions

® Hyperbolic PDE solvers, more reduced-/mixed-precision climate simulation,
multilevel Monte Carlo methods.

® Expected speedups of our RKC schemes are 75% on CPUs and 94% on GPUs. It
would be nice to verify this on hardware that supports half-precision computations.




Thank you for listening! If you want to know more...

Papers, slides, and more info at: https://croci.github.io
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Expected computational savings

Due to the limited availability of CPUs supporting half-precision computations, we rely
on in-software emulation = CPU timings not available.

Nevertheless, the mixed-precision schemes should be cheaper by roughly a factor

st —((s—q)+qr) where 1 — Cost of RHS evals in high
e= sr ’ "= Cost of RHS evals in low

A scheme in double/half yields up to » = 4 on CPU and up to » = 16 on GPUs.

® For RK4 this leads to 56% (¢ = 1) and 40% (g = 2) savings on CPUs.

e Stabilised methods have lots of stages and low order: can essentially take s — oo,

giving o — 1 — 1/r. E.g. this leads to a 75% speedup on CPUs (94% on GPUs).

Note: We have ignored additional savings related to memory/caching effects.
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Stabilising RKC2
Recap: we computed Afj = Alfj + Agfj, where Al_fj = f/(...)0; = O(A#?).

The culprit is the ©; term: for small At this is small and ensures 2nd order convergence,
but for large At it becomes large and leads to instability!
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The culprit is the ©; term: for small At this is small and ensures 2nd order convergence,
but for large At it becomes large and leads to instability!

To fix this, consider the 1-order preserving evaluation of A_fj (same as for RKC1):
Afj = fi(g;)d; + O(A1).

This leads to a stable scheme for large At, but is only first-order accurate for small At.
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Stabilising RKC2

Recap: we computed Afj = Alfj + Agfj, where Al_fj = f/(...)0; = O(A#?).

The culprit is the ©; term: for small At this is small and ensures 2nd order convergence,
but for large At it becomes large and leads to instability!

To fix this, consider the 1-order preserving evaluation of A_fj (same as for RKC1):
Afj = fi(g;)d; + O(A1).
This leads to a stable scheme for large At, but is only first-order accurate for small At.

Avfj+Bofy, i 052 < [ld;l2,

Solution: set Af- = { o <
! Afj, if [[95]l2 > [ld;l2-

This leads to a 2nd-order and stable method.
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Convergence and nonlinear stability

Theorem (C. and RdS 2022)

1) Our order-p mixed-precision RKC schemes are p-order preserving if f is of class C?.
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Convergence and nonlinear stability

Theorem (C. and RdS 2022)

1) Our order-p mixed-precision RKC schemes are p-order preserving if f is of class C?.

2) Furthermore, if there exist ci,co > 0 independent from At such that, for all j,n,

(i) 1Af; — AFill2 < cillgnll2,
(i) ld;ll2 < c2llgnll2,

then there also exist constants C7,Cs > 0 such that, for all n and for all At for which
the exact method is stable, the following non-asymptotic bound holds:

Hgn-i-l - yn+1”2 < H:’)n - yn||2 + At min(clAtp, 02)

Note: (i) and (ii) control the amplification of rounding errors in the non-asymptotic
regime. Both conditions are automatically satisfied if either At — 0 or if f is linear.
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Internal error propagation and linear stability

Theorem (C. and RdS 2022)

Let f(y) = Ay with A being a symmetric npd matrix. Then, Conditions (i)-(ii) in the
previous theorem are automatically satisfied. Furthermore, our order-p schemes satisfy

Unt1 = RE(ALA)Gn + 75(Gn),
where 5 contains the rounding errors introduced at time step n, and is bounded by
Ir2ll2 < Wp(At, A) (1 + CAtu) ™ = 1) 5",

where 0 < W, (At, A) <2, ¥,(At, A) = O(AtP), and C > 0.

5/8



Linear stability result - some comments

¢ Updated RKC theory. The bounds account for rounding errors propagating from
previous stages, an overlooked phenomenon in RKC theory [Verwer et al. 1990].

® No classical stability proof. Our theory allows the error to grow for large At since
[9n+1 = Yntallz < [RE(ALA)2llgn — yallz + [7E(Gn)ll2 < (1 + @)l|gn — yall2,
where o > 0. We can prove no error growth under stringent conditions on x(A).
¢ Rounding errors pose new challenges: they are non-smooth and destroy any
spectral relation between iterates. This forbids any analysis based on eigenvalues or

smoothness and results in a pessimistic worst-case bound.

® Methods are stable in practice, independently from x(A). The worst-case
behaviour is not observed.
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Numerical results - error vs number of stages (4-Laplace diffusion)
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