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Overview

Background
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Round to nearest

if ¥ <0.5
if 4 > 0.5
Xk X Xk+1
L | ]
1 | 1

P(Xk1 — Xk),

v € [0,1].

fi(x) =x(1+0), with | <uw.
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Stochastic rounding XFORD

with probability 1 — 4

with probability ¥

Xk X Xk+1
| | ]
1 | 1

P (Xk+1 — Xk),

v € [0,1].

sr(x) = x(1+0(w)), with [0(w)|] <2u, and E[sr(x)] = x.
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RtN might cause stagnation =7 OXFORD

Xk ——— xi + Ax Xk+1
1 | | ]
1 | | 1
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RtN might cause stagnation =7 OXFORD

7N

Xk — x + Ax Xk+1
I | | I
I \ T 1
0 1

Example: the series ) diverges, yet it “converges” with RtN in finite precision!

n=1n

Oxford . . -
Mathematics M. Croci PDEs in half precision



UNIVERSITY OF

SR is resilient to stagnation =/ OXFORD

7N

X ————— x; + Ax Xk+1
1 | | ]
1 | | 1
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Properties of SR [Connolly, Higham, Mary 2020]

The good:
® SR roundoffs are zero mean and mean-independent: E[d;|d1,...,di—1] = E[6;] = 0.

® Rounding errors on n term sums accumulate like O(y/nu) rather than O(nu).

e Evaluation of linear functions is exact in expectation. O(u?) bias for C? functions.
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Properties of SR [Connolly, Higham, Mary 2020] XFORD

The good:
® SR roundoffs are zero mean and mean-independent: E[d;|d1,...,di—1] = E[6;] = 0.

® Rounding errors on n term sums accumulate like O(y/nu) rather than O(nu).

e Evaluation of linear functions is exact in expectation. O(u?) bias for C? functions.

The less good:

® \Worst-case error same order as RtN.

® |imited, yet growing, hardware support.
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Heat equation with nonzero forcing

We consider the heat equation with non-zero forcing:

u(t, x) = V2u(t,x) + f(t,x), x€ D=1[0,1]9, t>0,
u(0, x) = uo(x), x €D,
u(t, x) = g(x), x € 0D, t>0.

We use finite differences in space and a Runge-Kutta method in time with absolute
stability function S(z). Discretisation parameters: At, h, A = At/h?.
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Heat equation with nonzero forcing XFORD

We consider the heat equation with non-zero forcing:

u(t, x) = V2u(t,x) + f(t,x), x€ D=1[0,1]9, t>0,
u(0, x) = uo(x), x €D,
u(t, x) = g(x), x € 0D, t>0.

We use finite differences in space and a Runge-Kutta method in time with absolute
stability function S(z). Discretisation parameters: At, h, A = At/h?.

Let A be the (spd) stiffness matrix. The numerical scheme is
U™ = S(—AtA)U" + AtF" = U" + AU",

e.g. Sre(—AtA) = (I — AtA), Sge(—AtA) = (I + AtA)L. )
eg. ArelU" = —AtAU" + AtF", AgeU™ = (| + AtA) L~ AtAU" + ALED).

We work in bfloat16 half precision, u =278 ~ 4 x 1073.
Everything extends to FEM and linear parabolic equations.
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Overview &~ OXFORD

A 3-step guide to solving the heat equation in low precision
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1) Local rounding errors and the delta form £’ OXFORD

How to best implement the Runge-Kutta scheme? Use the delta form!
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1) Local rounding errors and the delta form XFORD

How to best implement the Runge-Kutta scheme? Use the delta form!
In finite precision we compute:

U = S(—~AtA)0" + AtF" + E", (non-delta form).
Ot =0"+A0"+:"+ 0", (delta form).

Here €7, ©" and " are the local rounding errors. ©" is the error in the computation
of AU" and &" is the error in its addition to U".
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1) Local rounding errors and the delta form

How to best implement the Runge-Kutta scheme? Use the delta form!
In finite precision we compute:
U = S(—~AtA)0" + AtF" + E", (non-delta form).
Ut =0"+A0"+e"+ 0", (delta form).

Here €7, ©" and " are the local rounding errors. ©" is the error in the computation
of AU" and &" is the error in its addition to U".

Theorem [C. and Giles 2020]

Assume that there exist constants Mg, My, Ma > 0 such that |f(t, x)| < My,
107]|oe < My, ||AtAD"]|oo < MaAALP, [[AtAD" — AtAD"||oo < MaAtP with p > 0.

Then Ja,b>0s.t. Vn, ||E€" || < a(My + AtMs)u = E,
[1©"|co < b(MAALP + AtMf)u = 0O,  ||€"||oc < uM, = €.

Note: in theory and practice we have © < ¢ < €.
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2) Finite differences and exact subtraction =7 OXFORD

How to best implement the matrix-vector product —AU"?

207+ UR, (U, - up) - (U - uy)
h? ’ h? '
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2) Finite differences and exact subtraction =7 OXFORD

How to best implement the matrix-vector product —AU"?

207+ UL, (U, - U - (Ur - ury)
h? ’ h? '

Leads to O(h~2) error! Leads to near-exact matvecs.

A similar trick works for FEM as well, but requires matrix-free matvecs.
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2) Finite differences and exact subtraction =7 OXFORD

How to best implement the matrix-vector product —AU"?

207+ UL, (U, - U - (Ur - ury)
h? ’ h? '

Leads to O(h~2) error! Leads to near-exact matvecs.

A similar trick works for FEM as well, but requires matrix-free matvecs.

Parts of a Theorem [C. and Giles 2020]

If a, b, c € R are exactly represented in floating point arithmetic, and

1
max (|a — b, [b — c[) < 7 min(|al, |b], [c])

then (a — b) — (b — ¢) is computed exactly.

See also Section 2.5 in “Accuracy and Stability of Numerical Algorithms” by Nick Higham.
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t-case local rounding errors in 2D (€ and ©) “®) OXFORD

RtN SR
10
3
S
=107
8
£ 102
T\
BE - FE BE
N delta form -+= delta form - - delta form == delta form
1073 = naive matvec —>»= naive matvec 1073 = naive matvec —»= naive matvec
e+ no delta form -+ no delta form e+ no delta form -+ no delta form
— O(At"®) — oA — O(At) oAy
103 102 101 102 102
At At
Note: from now on we use the delta form with “smart” matvecs.
Oxford .
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3) RtN vs SR =’ OXFORD

Why is RtN in low precision bad for parabolic equations?

a) Stagnation:
e RtN always stagnates for sufficiently small At.

® The RtN solution is initial condition, discretization and precision dependent.

b) Global error:

e RtN rounding errors are strongly correlated and cannot be modelled as zero-mean
independent random variables.

® RtN global errors grow like O(uAt~1) until stagnation.

SR fixes all these issues!
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3a) Stagnation (left 1D, right 2D)
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2.0

1.8

1.6

double (same as exact)

1.0

0.8 ]
—— SR, all initial conditions f
—— RtN yy =1 ’

0.6 -~ RtN,uyg=3/2— |z —1/2| /

— — RtN, uy =1+ noise

04l T REN, uy = 1+ sin(8rz)

0.0 0.2 0.4 0.6
T

_‘ i ‘ b H
00 0.1 02 03 04 05 06 07 08 091.0
exact solution

| |
0.0 0.1 0.2 0.3 04 0.5
RtN

RtN computations are discretization and initial condition dependent. SR works!
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3b) Global rounding errors [C. and Giles 2020] XFORD

Define the global rounding error E" = U" — U". Since ©" is negligible we have
E™ = S(—AtA)E" + "

Compare this with traditional convergence/rounding error results for ODE solvers where
e is a O(At?) term [Henrici 1962-1963, Araté 1983].

We can distinguish two cases:

RtN: we can only assume the worst-case scenario, || < ¢ for all n, .

SR: the € are zero-mean spatially independent and temporally mean-independent.
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3b) Global rounding errors [C. and Giles 2020] XFORD

Define the global rounding error E" = U" — U". Since ©" is negligible we have
E™ = S(—AtA)E" + "

Compare this with traditional convergence/rounding error results for ODE solvers where
e is a O(At?) term [Henrici 1962-1963, Araté 1983].

We can distinguish two cases:

RtN: we can only assume the worst-case scenario, || < ¢ for all n, .
SR: the € are zero-mean spatially independent and temporally mean-independent.

Mode Norm 1D 2D 3D

RtN L2, 00 O(sAt™1) O(eAt™1) O(eAt™1)
SR E[|| - [|s0] O(eAt=Y4(At)/?)  O(el(At)) O(el(At)1/?)
SR E[|| - Hfz]l/2 O(eAt~1/%) O(et(At)Y?)  O(e)

Asymptotic global rounding error blow-up rates; /(At) = |log(A\~*At)].

PDEs in half precision
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) Global rounding errors (here at steady-state) "2’ OXFORD

Global error (delta form, 2D)

00 norm Ll norm
5 - - RtN-FE SR-BE o - - RtN-FE SR-BE
10 —*- SR-FE — oAt 1o —*— SR-FE — oAt
-&- RtN-BE = et O(| log(At)]) -4&- RIN-BE O(|log(At)]1/2)

L 107

- g
£ 5]
10!
10% o e \*
lon ———————— r—— . — s -
102 1073 102
At

Note: relative error = error x (u||UN||)~!
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Outlook

XFORD

® Working in low precision can bring large speed, memory and energy consumption
improvements. New hardware supports low-precision.

® SR might be an effective way of obtaining accurate results in much lower precision
when solving time-dependent parabolic PDEs.

® Custom-built C++ low-precision emulator (bitbucket.org/croci/libchopping/)
inspired by [Higham and Pranesh 2019]. Any chance to make CPFloat
object-oriented (C++/Python wrapper)?

Current/future research directions

® Hyperbolic PDEs and stabilised explicit RK methods.
® Nested multilevel Monte Carlo methods and Optimization algorithms.

® Weather forecasting and brain simulation applications.

Oxford
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Thank you for listening! &’ OXFORD

Preprint, slides, and more info at: https://croci.github.io
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Promising results (by Milan Kloewer in Oxford Physics) &£ OXFORD

fpl6 (3 digits)

bfloatl6 (2 digits)

N

N

RtN SR
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Prominsing results (by Milan Kloewer in Oxford Physics) XFORD
fp16 (3 digits) + REN fp16 (3 digits) + SR

fp64 (15 digits)

T
0.0 0.2 0.4 0.6 0.8 1.0
Tracer concentration
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3a) Stagnation effects - theory

Stagnation fl(x + €) = x occurs whenever 5|x| > |e|. For the PDE:
= ~ 2|07 > |AOP| = |07 — 07) ~ Atli
(e, )| ~ 51071 > [A07] = |07 — OF| ~ Atfi(tn, ),
This shows that LAI,” will not be updated whenever

| u(tn, xi)| & 2(At/u)[i(tn, ;).

More formally,

Lemma [C. and Giles 2020]

Assume that the delta form is used and that p > 0. If there exists ¢ > 0 such that
|U7| > € for some i, 7, then there exists 7(€) > 0 such that if At < 7, we have
Ul” = LAI,’_’ for all n > n.
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