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Objective: developing low-precision PDE solvers

M. Croci PDEs in half precision



Overview

Background

A 3-step guide to solving the heat equation in low precision
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Round to nearest

xk x xk+1

ϑ(xk+1 − xk),

ϑ ∈ [0, 1].

if ϑ < 0.5

if ϑ > 0.5

fl(x) = x(1 + δ), with |δ| ≤ u.
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Stochastic rounding

xk x xk+1

ϑ(xk+1 − xk),

ϑ ∈ [0, 1].

with probability 1− ϑ
with probability ϑ

sr(x) = x(1 + δ(ω)), with |δ(ω)| ≤ 2u, and E[sr(x)] = x .
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RtN might cause stagnation

xk+1xk xk + ∆x

Example: the series
∑∞

n=1
1
n diverges, yet it “converges” with RtN in finite precision!
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SR is resilient to stagnation

xk+1xk xk + ∆x

Example: the series
∑∞

n=1
1
n diverges, yet it “converges” with RtN in finite precision!

M. Croci PDEs in half precision



Properties of SR [Connolly, Higham, Mary 2020]

The good:

• SR roundoffs are zero mean and mean-independent: E[δi |δ1, . . . , δi−1] = E[δi ] = 0.

• Rounding errors on n term sums accumulate like O(
√
nu) rather than O(nu).

• Evaluation of linear functions is exact in expectation. O(u2) bias for C 2 functions.

The less good:

• Worst-case error same order as RtN.

• Limited, yet growing, hardware support.
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Heat equation with nonzero forcing

We consider the heat equation with non-zero forcing:





u̇(t, x) = ∇2 u(t, x) + f (t, x), x ∈ D = [0, 1]d , t > 0,
u(0, x) = u0(x), x ∈ D,
u(t, x) = g(x), x ∈ ∂D, t > 0.

We use finite differences in space and a Runge-Kutta method in time with absolute
stability function S(z). Discretisation parameters: ∆t, h, λ = ∆t/h2.

Let A be the (spd) stiffness matrix. The numerical scheme is

Un+1 = S(−∆tA)Un + ∆tF n = Un + ∆Un,

e.g. SFE(−∆tA) = (I −∆tA), SBE(−∆tA) = (I + ∆tA)−1.
e.g. ∆FEUn = −∆tAUn + ∆tF n, ∆BEUn = (I + ∆tA)−1(−∆tAUn + ∆tF̃ n).

We work in bfloat16 half precision, u = 2−8 ≈ 4× 10−3.
Everything extends to FEM and linear parabolic equations.
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1) Local rounding errors and the delta form

How to best implement the Runge-Kutta scheme? Use the delta form!

In finite precision we compute:

Ûn+1 = S(−∆tA)Ûn + ∆tF n + εn, (non-delta form).

Ûn+1 = Ûn + ∆Ûn + εn + Θn, (delta form).

Here εn, Θn and εn are the local rounding errors. Θn is the error in the computation
of ∆Ûn and εn is the error in its addition to Ûn.

Theorem [C. and Giles 2020]

Assume that there exist constants Mf , Mu, MA > 0 such that |f (t, x)| ≤ Mf ,

||Ûn||∞ ≤ Mu, ||∆tAÛn||∞ ≤ MA∆tp, ||∆̂tAÛn −∆tAÛn||∞ ≤ MA∆tp with p ≥ 0.

Then ∃a, b > 0 s.t. ∀n, ||εn ||∞ ≤ a(Mu + ∆tMf )u = ε,
||Θn||∞ ≤ b(MA∆tp + ∆tMf )u = Θ, ||εn||∞ ≤ uMu = ε.

Note: in theory and practice we have Θ� ε < ε.
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2) Finite differences and exact subtraction

How to best implement the matrix-vector product −AUn?

Un
i+1 − 2Un

i + Un
i−1

h2
,

(Un
i+1 −Un

i )− (Un
i −Un

i−1)

h2
.

Leads to O(h−2) error! Leads to near-exact matvecs.

A similar trick works for FEM as well, but requires matrix-free matvecs.

Parts of a Theorem [C. and Giles 2020]

If a, b, c ∈ R are exactly represented in floating point arithmetic, and

max (|a− b|, |b − c |) ≤ 1

2
min(|a|, |b|, |c |)

then (a− b)− (b − c) is computed exactly.

See also Section 2.5 in “Accuracy and Stability of Numerical Algorithms” by Nick Higham.
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Worst-case local rounding errors in 2D (ε and Θ)

10−3 10−2

∆t
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RtN

FE

delta form

naive matvec

no delta form

O(∆t0.8)

BE

delta form

naive matvec
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O(∆t0.7)

BE

delta form

naive matvec

no delta form

O(∆t0.7)
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FE

delta form

naive matvec

no delta form

O(∆t1.1)

BE

delta form

naive matvec

no delta form

O(∆t0.7)

BE

delta form

naive matvec

no delta form

O(∆t0.7)

Note: from now on we use the delta form with “smart” matvecs.
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3) RtN vs SR

Why is RtN in low precision bad for parabolic equations?

a) Stagnation:

• RtN always stagnates for sufficiently small ∆t.

• The RtN solution is initial condition, discretization and precision dependent.

b) Global error:

• RtN rounding errors are strongly correlated and cannot be modelled as zero-mean
independent random variables.

• RtN global errors grow like O(u∆t−1) until stagnation.

SR fixes all these issues!
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3a) Stagnation (left 1D, right 2D)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Û

∞

double (same as exact)

SR, all initial conditions

RtN, u0 = 1

RtN, u0 = 3/2− |x− 1/2|
RtN, u0 = 1 + noise

RtN, u0 = 1 + sin(8πx)

RtN computations are discretization and initial condition dependent. SR works!
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3b) Global rounding errors [C. and Giles 2020]

Define the global rounding error En = Ûn −Un. Since Θn is negligible we have

En+1 = S(−∆tA)En + εn.

Compare this with traditional convergence/rounding error results for ODE solvers where
εn is a O(∆t2) term [Henrici 1962-1963, Arató 1983].

We can distinguish two cases:

RtN: we can only assume the worst-case scenario, |εni | ≤ ε for all n, i .

SR: the εni are zero-mean spatially independent and temporally mean-independent.

Mode Norm 1D 2D 3D

RtN L2,∞ O(ε∆t−1) O(ε∆t−1) O(ε∆t−1)

SR E[|| · ||∞] O(ε∆t−1/4`(∆t)1/2) O(ε`(∆t)) O(ε`(∆t)1/2)

SR E[|| · ||2L2 ]1/2 O(ε∆t−1/4) O(ε`(∆t)1/2) O(ε)

Asymptotic global rounding error blow-up rates; `(∆t) = | log(λ−1∆t)|.
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3b) Global rounding errors (here at steady-state)
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Global error (delta form, 2D)

Note: relative error = error × (u||UN ||)−1
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Outlook

• Working in low precision can bring large speed, memory and energy consumption
improvements. New hardware supports low-precision.

• SR might be an effective way of obtaining accurate results in much lower precision
when solving time-dependent parabolic PDEs.

• Custom-built C++ low-precision emulator (bitbucket.org/croci/libchopping/)

inspired by [Higham and Pranesh 2019]. Any chance to make CPFloat
object-oriented (C++/Python wrapper)?

Current/future research directions

• Hyperbolic PDEs and stabilised explicit RK methods.

• Nested multilevel Monte Carlo methods and Optimization algorithms.

• Weather forecasting and brain simulation applications.
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Thank you for listening!

Preprint, slides, and more info at: https://croci.github.io

[1] M. Croci and M. B. Giles. Effects of round-to-nearest and stochastic rounding in the numerical
solution of the heat equation in low precision, 2020. URL http://arxiv.org/abs/2010.16225.

[2] M. P. Connolly, N. J. Higham, and T. Mary. Stochastic Rounding and its Probabilistic Backward
Error Analysis, 2020. URL https://hal.archives-ouvertes.fr/hal-02556997/document.

[3] M. Fasi and M. Mikaitis. Algorithms for stochastically rounded elementary arithmetic operations in
IEEE 754 floating-point arithmetic, 2020. URL
http://eprints.maths.manchester.ac.uk/2758/1/fami20.pdf.

[4] N. J. Higham and T. Mary. A new approach to probabilistic rounding error analysis. SIAM Journal
of Scientific Computing, 41(5):2815–2835, 2019. doi: 10.1137/18M1226312.

[5] N. J. Higham and S. Pranesh. Simulating low precision floating-point arithmetic. SIAM Journal on
Scientific Computing, 41(5):C585–C602, 2019. doi: 10.1137/19M1251308.

[6] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.
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Promising results (by Milan Kloewer in Oxford Physics)
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Prominsing results (by Milan Kloewer in Oxford Physics)
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3a) Stagnation effects - theory

Stagnation fl(x + ε) = x occurs whenever u
2 |x | ≥ |ε|. For the PDE:

u

2
| u(tn, xi )| ≈

u

2
|Ûn

i | ≥ |∆Ûn
i | = |Ûn+1

i − Ûn
i | ≈ ∆t|u̇(tn, xi )|,

This shows that Ûn
i will not be updated whenever

| u(tn, xi )| ' 2(∆t/u)|u̇(tn, xi )|.

More formally,

Lemma [C. and Giles 2020]

Assume that the delta form is used and that p > 0. If there exists ε > 0 such that
|Û n̄

i | ≥ ε for some i , n̄, then there exists τ(ε) > 0 such that if ∆t < τ , we have

Ûn
i = Û n̄

i for all n ≥ n̄.
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