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Objective: developing mixed-precision PDE solvers

M. Croci Mixed-precision ERK



Framework and objective

We consider mixed-precision explicit RK schemes for the solution of ODEs in the form

y ′(t) = f (t, y(t)) = Ay(t) + g(t, y(t)), y(0) = y0,

where g(t, y) is Lipschitz continuous. In our experiments: MOL discretisation of a PDE.

Objective

Use as many low-precision RHS evaluations as possible without affecting accuracy or
stability.

Why do we focus on explicit methods?

• The development of mixed-/reduced-precision linear/nonlinear iterative solvers is a
very active field of research. Lots of exciting new work: [Abdelfattah et al. 2020].

• Avoiding nonlinear/linear solves is in general a big advantage. We use stabilised RK
methods to minimise timestep restrictions.

• Most performance gains in our algorithms come
from reducing the precision of the linear term.

• Extensions to reduced-precision evaluations of g
currently only possible under strong assumptions.

• Help and suggestions are welcome!
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Floating point formats

Our mixed-precision algorithms combine high (double) and low (half) precision formats.

Format Roundoff unit u xmin xmax

bfloat16 (half) 2−8 ≈ 3.91× 10−3 1.18× 10−38 3.39× 1038

fp16 (half) 2−11 ≈ 4.88× 10−4 6.10× 10−5 6.55× 104

fp32 (single) 2−24 ≈ 5.96× 10−8 1.18× 10−38 3.40× 1038

fp64 (double) 2−53 ≈ 1.11× 10−16 2.22× 10−308 1.80× 10308
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Absolute stability

Dahlquist’s test problem: y ′ = λy , y(0) = 1.
s-stage RK method yn = Rs(z)n, where z = ∆tλ = x + iy . Stable if |Rs(z)| < 1.
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Explicit stabilised RK methods

Idea: pick the poly Rs(z) so as to maximise the stability region. Two approaches:

1. Maximise the real stability region (good for parabolic problems).

2. Maximise the region in which the method is TVD (good for hyperbolic problems).
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Explicit stabilised RK methods

Idea: pick the poly Rs(z) so as to maximise the stability region. Two approaches:

1. Maximise the real stability region: use orthogonal polys  RKC, RKL, RKG, etc..

2. Maximise the region in which the method is TVD  SSPRK.
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Runge-Kutta Chebyshev methods [van der Houwen and Sommeijer 1980]

The largest possible region is O(s2) and is obtained by taking Rs(z) = Ts

(
1 + z

s2

)
.

Other orthogonal polynomials are also good choices (e.g. Legendre, Gegenbauer).

These methods are of low-order (p ≤ 4), but they use a lot of stages to maximise
stability (i.e. not for accuracy purposes) → can do most of these in low precision!

As a curiosity: the stages of RKC methods are implemented via three-term recurrences:
d0 = 0, d1 = µ1∆tf (tn, yn),

dj = νjdj−1 + κjdj−2 + µj∆tf (tn + cj∆t, yn + dj−1) + γj∆tf (tn, yn). j = 2, . . . , s,

yn+1 = yn + ds .
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Absolute stability of RKC methods (RKC1)

s = 4

s = 8
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Linear problems, i.e. g(t, y) = g = const

Consider the exact solution at t = ∆t and its corresponding p-th order RK
approximation (take g = 0 for simplicity):

y(∆t) = exp(∆tA)y0 =
∞∑
j=0

(∆tA)j

j!
y0,

y1 =

p∑
j=0

(∆tA)j

j!
y0 + O(∆tp+1).

Giving a local error of τ = ∆t−1||y(∆t)− y1|| = O(∆tp).

Evaluating the scheme in finite precision yields:

ŷ1 = ε+ y0 +

p∑
j=1

∆t j

j!

(
j∏

k=1

(A + ∆Ak)

)
y0 + O(∆tp+1).
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Linear problems

τ = ∆−1||ŷ1 − y1|| = ∆t−1

∣∣∣∣∣∣
∣∣∣∣∣∣ε+

p∑
j=1

∆t j

j!

(
j∏

k=1

(A + ∆Ak)− Aj

)
y0

∣∣∣∣∣∣
∣∣∣∣∣∣+ O(∆tp).

Let us consider the following scenarios:

1. We have ε = O(u) and we get τ = O(u∆t−1 + ∆tp). Rapid error growth!

2. Exact vector operations: ε = 0 so τ = O(u + ∆tp). O(u) limiting accuracy and
loss of convergence.

3. First q ≥ 1 matvecs exact. Now ε = 0 and ∆Ak = 0 for k = 1, . . . , q, so
τ = O(u∆tq + ∆tp). Recover q-th order convergence!
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Order-preserving mixed-precision RK methods

From now on we set u to be the roundoff unit of the low-precision format.

Assumption

Operations performed in high-precision are exact.

Definition (Order-preserving mixed-precision RK method)

A p-th order mixed-precision RK method is q-order-preserving (q ∈ {1, . . . , p}), if it
converges with order q under the above assumption.

Existing methods: Standard mixed-precision RK schemes perform all function
evaluations in low-precision and they are therefore not order-preserving.

Our objective: Use q function evaluations to obtain a q-order-preserving
mixed-precision RK method.
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Linear stability and convergence

In the linear case, we can easily obtain a q-order-preserving method by performing all
vector operations, and only q matvecs in high precision.

Let z = ∆t||A||2, ||y0||2 ≤ 1. We then have

||R̂s − Rs ||2 ≤ cm(s − q)u
s∑

j=q+1

z j

j!
= O(uzq+1).

• This ensures stability as long as the method has a “small” stability region and/or
∆t is small enough.

• For stabilised methods we need a better bound since z = O(s2), but we can still
prove stability if A is non-singular. In practice the methods are always stable for
singular A and for all s if q = 1 and for s ≤ 1√

u
for q = 2.

• R̂s(z) = Rs(z) + O(uzq+1) ⇒ order q method. Comparable/smaller error constant.
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Linear stability for RK methods (in practice)

M. Croci Mixed-precision ERK



Linear stability for RKC (in practice, s = 128, u = 2−8)
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Linear problems - convergence (3D heat eqn)
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Heat eqn 3D - time discretization error

The transition from order p to order q happens roughly when ∆t = O(||A||−1u
1

p−q )
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Nonlinear problems

y ′(t) = f (t, y(t)) = Ay(t) + g(t, y(t)), y(0) = y0,

When g 6= const, we can still construct q-order-preserving mixed-precision RK methods
for q ≤ 2 under one of the following assumptions/restrictions:

(H) - g is cheap to evaluate wrt Ay .

(H) - g is non-stiff/much less stiff than Ay  use multirate schemes.

(L) - Lipschitz continuity of g can be made to hold in low precision:

||fl (g(t + ∆t, y + ∆y)− g(t, y)) || = O(∆t + ||∆y ||) + ε.

Want ε to be O(∆t + ||∆y ||). Examples:
• Analyitic representation of differences,

e.g. (u + δu)∇(u + δu)− u∇u = δu∇u + u∇δu + δu∇δu = O(δu).
• g acts entrywise on y , e.g. reaction terms.

M. Croci Mixed-precision ERK



1-order-preserving mixed-precision ERK methods

A generic RK method in Butcher form reads:

yn+1 = yn + ∆yn = yn +
s∑

i=1

biki ,

ki = ∆tf

tn + ci∆t, yn +
i−1∑
j=1

aijkj

 , i = 1, . . . , s.
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1-order-preserving mixed-precision ERK methods

In our specific case, this becomes:

yn+1 = yn + ∆yn = yn +
s∑

i=1

biki ,

k1 = ∆tAyn + ∆tg(tn, yn),

ki = ∆tAyn + ∆tA
i−1∑
j=1

aijkj + ∆tg i , i = 2, . . . , s.

g i = g

tn + ci∆t, yn +
i−1∑
j=1

aijkj

 .

For a 1-order-preserving method we need to make sure all rounding errors are O(∆t2).
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1-order-preserving mixed-precision ERK methods

What if g is expensive? Rewrite:

yn+1 = yn + ∆yn = yn +
s∑

i=1

biki ,

k1 = ∆tAyn + ∆tg(tn, yn),

ki = k1 + ∆tÂ
i−1∑
j=1

aijkj + ∆t∆̂g i , i = 2, . . . , s.

∆g i = g

tn + ci∆t, yn +
i−1∑
j=1

aijkj

− g(tn, yn) = O(∆t)

For a 1-order-preserving method we need to make sure all rounding errors are O(∆t2).

⇒ Now the ∆g i are O(∆t). Provided that they stay O(∆t) in low precision, we can
evaluate them in low. This can be done in the previously mentioned cases.
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2-order-preserving mixed-precision ERK methods

What about second order? Set k̃i = ki − k1, k1 = ∆tAyn + ∆tg(tn, yn). Then,

yn+1 = yn + k1 +
s∑

i=2

bi k̃i ,

k̃i = ∆tÂ
i−1∑
j=2

aij k̃j + ci∆tAk1 + ∆t∆g i , i = 1, . . . , s.

∆g i = g

tn + ci∆t, yn + cik1 +
i−1∑
j=2

aij k̃j

− g(tn, yn) = O(∆t)

For a 2-order-preserving method we need to make sure all rounding errors are O(∆t3).

⇒ If g is cheap to evaluate compute all orange terms exactly.
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2-order-preserving mixed-precision ERK methods

What if g is expensive? Then,

yn+1 = yn + k1 +
s∑

i=2

bi k̃i ,

k̃i = ∆tÂ
i−1∑
j=2

aij k̃j + ci∆tAk1 + ∆t∆̂1g i + ∆t∆2g i , i = 1, . . . , s.

∆1g i = g

yn + cik1 +
i−1∑
j=2

aij k̃j

− g(yn + cik1) = O(∆t2)

∆2g i = g(yn + cik1)− g(yn) = O(∆t)

For a 2-order-preserving method we need to make sure all rounding errors are O(∆t3).

⇒ Now the ∆1g i are O(∆t2). Provided that they stay O(∆t2) in low precision, we
can evaluate them in low. This can be done in the previously mentioned cases.
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Numerical results - convergence
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Outlook

• A näıve mixed-precision implementation can harm convergence.

• We can construct mixed-precision methods that will retain at least 1st or 2nd order
convergence and already reduce the overall error by orders of magnitude.

• It might be possible to extend to q > 2. However, handling the nonlinear terms
becomes increasingly tricky and we have not found a solution yet.

• For O(N) cost RHS-evaluations we save between 40− 60% of the cost of standard
RK. Even more for O(N2) evals or if we accout for memory/caching-related costs.

• We can make ESRK methods as cheap as their low-precision counterpart.

Current/future research directions

• Finish analysis and paper write-up.

• Extensions to SSPRK methods.

• Larger q, generic nonlinear terms?
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Thank you for listening!
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Computational savings

The mixed-precision scheme is cheaper by roughly a factor

% =
(s − q)(r − 1)

sr
, where r =

Cost of RHS evals in high

Cost of RHS evals in low
.

A scheme in double/half yields r = 4` for O(N`)-cost RHS evaluations.

• For RK4 and ` = 1 this leads to 56% (q = 1) and 40% (q = 2) savings.

• Stabilised methods have lots of stages and low order: can essentially take s →∞,
giving %→ 1− 1/r . E.g. this leads to 75% savings if ` = 1.

Note: We have ignored additional savings related to memory/caching effects.
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Numerical results - error vs number of stages
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