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Objective: developing mixed-precision PDE solvers
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Framework and objective XFORD

We consider mixed-precision explicit RK schemes for the solution of ODEs in the form

y'(t) = f(t,y(t)) = Ay(t) + g(t.¥(t)), ¥(0) = yo,

where g(t,y) is Lipschitz continuous. In our experiments: MOL discretisation of a PDE.

Objective

Use as many low-precision RHS evaluations as possible without affecting accuracy or
stability.

Why do we focus on explicit methods?
® The development of mixed-/reduced-precision linear/nonlinear iterative solvers is a
very active field of research. Lots of exciting new work: [Abdelfattah et al. 2020].
¢ Avoiding nonlinear/linear solves is in general a big advantage. We use stabilised RK
methods to minimise timestep restrictions.
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Framework and objective

We consider mixed-precision explicit RK schemes for the solution of ODEs in the form

y'(t) = F(t,y(t)) = Ay(t) + g(t, ¥(1)).  ¥(0) = yo,

where g(t,y) is Lipschitz continuous. In our experiments: MOL discretisation of a PDE.

Objective

Use as many low-precision RHS evaluations as possible without affecting accuracy or
stability.

m ® Most performance gains in our algorithms come
from reducing the precision of the linear term.

wo RK ® Extensions to reduced-precision evaluations of g
currently only possible under strong assumptions.

JN PROGRESS) ® Help and suggestions are welcome!
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Floating point formats

Our mixed-precision algorithms combine high (double) and low (half) precision formats.

Format Roundoff unit u Xmin Xmax
bfloat16 (half) 278 ~3.91 x 1073  1.18 x 10738  3.39 x 1038
fp16 (half) 2711~ 483 x107* 6.10x 1075  6.55 x 10*

fp32 (single) 272 ~5.96 x 1078 1.18 x 1073  3.40 x 1038
fp64 (double) 2753~ 1.11 x 10710 2.22 x 1073% 1.80 x 103%8
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Absolute stability XFORD

Dahlquist’s test problem: y’ = Ay, y(0) = 1.
s-stage RK method y” = Rs(z)", where z = AtA = x + iy. Stable if |[Rs(z)| < 1.
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Explicit stabilised RK methods

Idea: pick the poly Rs(z) so as to maximise the stability region. Two approaches:
1. Maximise the real stability region (good for parabolic problems).

2. Maximise the region in which the method is TVD (good for hyperbolic problems).
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Explicit stabilised RK methods

Idea: pick the poly Rs(z) so as to maximise the stability region. Two approaches:

1. Maximise the real stability region (good for parabolic problems).

2. Maximise the region in which the method is TVD (good for hyperbolic problems).
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Explicit stabilised RK methods

Idea: pick the poly Rs(z) so as to maximise the stability region. Two approaches:

1. Maximise the real stability region (good for parabolic problems).

2. Maximise the region in which the method is TVD (good for hyperbolic problems).
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Explicit stabilised RK methods

Idea: pick the poly Rs(z) so as to maximise the stability region. Two approaches:
1. Maximise the real stability region: use orthogonal polys ~» RKC, RKL, RKG, etc..

2. Maximise the region in which the method is TVD ~~
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Runge—Kutta ChebySheV methods [van der Houwen and Sommeijer 198

The largest possible region is O(s?) and is obtained by taking Rs(z) = Ts (14 %).
Other orthogonal polynomials are also good choices (e.g. Legendre, Gegenbauer).

These methods are of low-order (p < 4), but they use a lot of stages to maximise
stability (i.e. not for accuracy purposes) — can do most of these in low precision!

As a curiosity: the stages of RKC methods are implemented via three-term recurrences:
dy=0, d;= ,ulAtf(t",y"),
dj = dejfl + Iijdj,Q + ujAtf(tn + cht,y” + d_,;l) + ’)/J'Atf(tn,yn). j=2,...,s,
yn—l—l — yn + ds~
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Absolute stability of RKC methods (RKC1)
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Linear problems, i.e. g(t,y) = g = const

Consider the exact solution at t = At and its corresponding p-th order RK
approximation (take g = 0 for simplicity):

y(At) = exp(AtA)yo = Y L) .
e J!
J:
) .
AtA
n=>y ( i Y yo + 0(ae+)
j=0 '
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Linear problems, i.e. g(t,y) = g = const

Consider the exact solution at t = At and its corresponding p-th order RK
approximation (take g = 0 for simplicity):

y(At) = exp(AtA)yo = Y L) .
e J!
J:
) .
AtA
n=>y ( i Y yo + 0(ae+)
j=0 '

Giving a local error of 7 = At~ !||y(At) — y1|| = O(AtP).
Evaluating the scheme in finite precision yields:

P i J
. At
Yi=c¢+y+ Z - (H(A + AAk)> Yo+ O(Athrl).

j=1 k=1
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Linear problems

P i J
ETIN _ At .
r=A"Yg — || = At e+ _(H(A+AAk)—Af>yo + O(AtP).
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Linear problems

p J
=AY g — yi|| = A2 5+Z (H (A+ AAY) Af>yo +O(AtP).

Let us consider the following scenarios:
1. We have ¢ = O(u) and we get 7 = O(uAt~! + AtP). Rapid error growth!

Oxford . . ..
Mathematics M. Croci Mixed-precision ERK



Linear problems

p J
=AY g — yi|| = A2 5+Z (H (A+ AAY) Af>yo +O(AtP).

Let us consider the following scenarios:
1. We have ¢ = O(u) and we get 7 = O(uAt~! + AtP). Rapid error growth!

2. Exact vector operations: ¢ =0 so 7 = O(u + AtP).
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Linear problems

p J
=AY g — yi|| = A2 5+Z (H (A+ AAY) Af>yo +O(AtP).

Let us consider the following scenarios:
1. We have ¢ = O(u) and we get 7 = O(uAt~! + AtP). Rapid error growth!

2. Exact vector operations: ¢ =0 so 7 = O(u + AtP).

3. First g > 1 matvecs exact. Now ¢ =0 and AA, =0for k=1,...,q, so

7 = O(ulAt9 + AtP). Recover g-th order convergence!
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Order-preserving mixed-precision RK methods £’ OXFORD

From now on we set u to be the roundoff unit of the low-precision format.

Assumption

Operations performed in high-precision are exact.

Definition (Order-preserving mixed-precision RK method)

A p-th order mixed-precision RK method is g-order-preserving (g € {1,...,p}), if it
converges with order g under the above assumption.

Existing methods: Standard mixed-precision RK schemes perform all function
evaluations in low-precision and they are therefore not order-preserving.

Our objective: Use g function evaluations to obtain a g-order-preserving
mixed-precision RK method.
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Linear stability and convergence XFORD

In the linear case, we can easily obtain a g-order-preserving method by performing all
vector operations, and only g matvecs in high precision.
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Linear stability and convergence OXFORD

In the linear case, we can easily obtain a g-order-preserving method by performing all
vector operations, and only g matvecs in high precision.

Let z = At||A||2, |lyoll2 < 1. We then have

s
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Linear stability and convergence OXFORD

In the linear case, we can easily obtain a g-order-preserving method by performing all
vector operations, and only g matvecs in high precision.

Let z = At||A||2, |lyoll2 < 1. We then have

s

® This ensures stability as long as the method has a “small” stability region and/or
At is small enough.

® For stabilised methods we need a better bound since z = O(s?), but we can still
prove stability if A is non-singular. In practice the methods are always stable for
singular A and for all s if g =1 and for s < % for g = 2.

* Ry(z) = Rs(z) + O(uz9%1) = order g method. Comparable/smaller error constant.
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Linear stability for RK methods (in practice) XFORD
Exact stability region 3 Perturbed stabreg, u = 27° 3 Perturbed stabreg, u = 278
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Linear =’ OXFORD
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Linear problems - convergence (3D heat eqn) &’ OXFORD

mixed-precision RK4
-%- RK4,q=0 — 0(1)
-%- RK4,q=1 —— O(At)
-*- RK4,q=2 —— O(AR)
RK4,q=3 O(A#)
107° 1074
At

1
The transition from order p to order g happens roughly when At = O(||A||~tu?r—9)

Oxford
Mathematics

M. Croci Mixed-precision ERK



UNIVERSITY OF

Overview

Nonlinear problems
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Nonlinear problems

y'(t) = £(t.y(t)) = Ay(t) + g(t, ¥(t)).  ¥(0) =y,

When g # const, we can still construct g-order-preserving mixed-precision RK methods

for g < 2 under one of the following assumptions/restrictions:

(H) - g is cheap to evaluate wrt Ay.
(H) - g is non-stiff/much less stiff than Ay ~~ use multirate schemes.

(L) - Lipschitz continuity of g can be made to hold in low precision:

It (g(t+ Aty + Ay) — g(t,y)) || = O(At + |[Ay]]) + .

Want ¢ to be O(At + ||Ay]||). Examples:
® Analyitic representation of differences,

e.g. (u+déu)V(u+du)— uVu =6uVu+ uViu + §uVéu = O(du).
® g acts entrywise on y, e.g. reaction terms.
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1-order-preserving mixed-precision ERK methods XFORD

A generic RK method in Butcher form reads:

S
Y=y "+ Dy =y "+ biki,
i—1
i-1
ki = Atf t”—i—c,-At,y”—i—Za,-jkj , i=1,...,s.
=1
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1-order-preserving mixed-precision ERK methods

In our specific case, this becomes:

S
Yyl =y Ay =y "+ biki,
i=1
ki = AtAy" + Atg(t",y"),
i—1
ki = AtAy" + AtA> ajki+ Atgl, i=2,...s.
j=1
i—1
g =g|t"+clt, y'+ Z ajjk;
j=1

For a 1-order-preserving method we need to make sure all rounding errors are O(At?).
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1-order-preserving mixed-precision ERK methods XFORD

In our specific case, this becomes:

S
y" =y "+ Dy" =y "+ biki,
i=1
e —+ ,

i—1
ki = +At/2\2a,-jkj+ , 1=2,...,s.
j=1
i-1
g =g|t"+cAt, y"+ Z ajjk;
j=1

For a 1-order-preserving method we need to make sure all rounding errors are O(At?).

= If g is cheap to evaluate compute all terms exactly.
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1-order-preserving mixed-precision ERK methods

What if g is expensive? Rewrite:

S
y" =y "+ Dy" =y "+ biki,
i=1
e —+ ,

i—1
ki = ki + AtAS ajkj+ Athgl, i=2.....s.
j=1
i—1
Ag' =g | t"+ At y"+) ki | —g(t", y") = O(At)
=1

For a 1-order-preserving method we need to make sure all rounding errors are O(At?).

= Now the Ag’ are O(At). Provided that they stay O(At) in low precision, we can
evaluate them in low. This can be done in the previously mentioned cases.
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2-order-preserving mixed-precision ERK methods

What about second order? Set k; = k; — ki, k; = AtAy" + Atg(t", y"). Then,

S

y"t =y "+ ki + > bk,
i=2

k,':AtAZa,'jkj—l—C,' + , =1...,s.
j=2
. l_l ~
Ag' =g | t"+cAt, y" + ciki + Z ajki | —g(t",y") = O(At)
j=2

For a 2-order-preserving method we need to make sure all rounding errors are O(At3).

= If g is cheap to evaluate compute all terms exactly.
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2-order-preserving mixed-precision ERK methods

What if g is expensive? Then,

s
y"t =y "+ ki + > bik;,
i=2
y -1 o
ki = AtAY " ajk; + ¢ + AtAigl + . i=1,...,s.
j=2
. i_l ~
Nig =g |y +cki+) agki| —g(y"+ ciki) = O(AL)
j=2
Nog' = g(y" +ciki) —g(y") = O(At)
For a 2-order-preserving method we need to make sure all rounding errors are O(At3).

= Now the A;1g’ are O(At?). Provided that they stay O(At?) in low precision, we
can evaluate them in low. This can be done in the previously mentioned cases.
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Numerical results - convergence OXFORD
Brussellator - time discretization error Brussellator - time discretization error
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Outlook g(ERl;gED

® A naive mixed-precision implementation can harm convergence.

e We can construct mixed-precision methods that will retain at least 15 or 2" order
convergence and already reduce the overall error by orders of magnitude.

® |t might be possible to extend to g > 2. However, handling the nonlinear terms
becomes increasingly tricky and we have not found a solution yet.

® For O(N) cost RHS-evaluations we save between 40 — 60% of the cost of standard
RK. Even more for O(N?) evals or if we accout for memory/caching-related costs.

® \We can make ESRK methods as cheap as their low-precision counterpart.

Current/future research directions

® Finish analysis and paper write-up.
® Extensions to SSPRK methods.

® |larger g, generic nonlinear terms?
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Thank you for listening!
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Computational savings

The mixed-precision scheme is cheaper by roughly a factor

_(s—q)(r—1) h _ Cost of RHS evals in high
e= sr » WNETE T Cost of RHS evals in low

A scheme in double/half yields r = 4¢ for O(N*)-cost RHS evaluations.

® For RK4 and ¢ =1 this leads to 56% (g = 1) and 40% (g = 2) savings.

e Stabilised methods have lots of stages and low order: can essentially take s — oo,
giving o — 1 — 1/r. E.g. this leads to 75% savings if / = 1.

Note: We have ignored additional savings related to memory/caching effects.
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Numerical results - error vs number of stages ™ OXFORD
Heat eqn 2D - rounding error / discretization error Heat eqn 2D - rounding error / discretization error
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Numerical results - error vs number of stages
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Brussellator - rounding error / discretization error

Brussellator - rounding error / discretization error
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