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Brain simulation. Why?
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Physiological background: CSF and ISF flow

[image source: Wikipedia]
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Stochastic model of ISF tracer concentration

Here we only model ISF tracer concentration. Let G ⊂ R3 represent the brain,

ċ(t, x , ω) +∇ · (v(x , ω)c(t, x , ω))−∇ · (D∗(x , ω)∇c(t, x , ω)) = 0,

+ BCs on ∂G (defined later) | c(0, x , ω) = 0.

Here we model the ISF velocity v and tracer diffusivity D∗ to be random fields.

Solution via the FEM and advanced Monte Carlo methods.
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PDEs with random coefficients and standard Monte Carlo

In this part of the talk, we present some new advanced Monte Carlo algorithms for the
solution of PDEs with random coefficients. For simplicity, consider the model problem,

−∇ · (D∗(x , ω)∇p(x , ω)) = 1, x ∈ G ⊂ Rd , ω ∈ Ω,
p(x , ω) = 0, x ∈ ∂G , ω ∈ Ω.

Say that we are interested in computing E[P], where P(ω) =
∫
G p2dx = ||p||2L2(G)(ω).

Set D∗ = eu(x ,ω), where u ∼ N (0, C(x , y)) is a (Matérn) Gaussian random field.

Simple approach: standard Monte Carlo (MC) method: E[P] ≈ 1

N

N∑
n=1

PL(ωn).

root-mean-square error = bias + statistical error < ε

Bias: Assume cost of sampling one realisation of PL that is accurate enough is O(ε−q).
Statistical error: MC convergence rate O(N−1/2) means we need O(ε−2) samples.
Total MC complexity: O(ε−2−q).
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Multilevel Monte Carlo [Heinrich 2001, Giles 2008]

Solve for P using a hierarchy of L + 1 (possibly non-nested) meshes to obtain the
approximations P` of different accuracy for ` = 0, . . . , L, then

E[P] ≈ E[PL] = E[P0] +
L∑

`=0

E[P` − P`−1].

Apply standard MC to each term on the RHS:

E[P] ≈ 1

N0

N0∑
n=1

P0(ωn
0) +

L∑
`=0

1

N`

N∑̀
n=1

[P`(ω
n
` )− P`−1(ωn

` )].

Under suitable conditions =⇒ optimal N` known and O(ε−2) complexity, O(ε−q) better
than MC.

Other options: quasi Monte Carlo  O(ε−1−q) complexity.
Other options: multilevel Quasi Monte Carlo  O(ε−1) complexity.
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Gaussian field sampling

Sampling the Gaussian field u(x , ω) ∼ N (0, C) is hard!

Näıve approach

• Discretise u and compute a Cholesky factorization of the dense covariance matrix.

Better approaches

• Karhunen-Loève.

• Hierarchical matrices [Dölz et al. 2017, Feischl et al. 2018].

• FFT + circulant embeddings [Wood and Chan 1994, Dietrich and Newsam 1997].

• SPDE approach [Lindgren et al. 2009] (see next).
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SPDE approach to Matérn field sampling [Lindgren et al. 2009]

The SPDE approach re-casts the sampling problem as the solution of a SPDE, e.g.

Lu = u −∆u = Ẇ .

The (deterministic!) operator L determines the covariance of u.
Ẇ is spatial white noise and is defined through its action against test functions.

Spatial white noise in [0, 1]2.

Refs: [Abrahamsen 1997, Scheuerer 2010, Lindgren et al. 2009, Bolin et al. 2017, Khristenko et al. 2018]
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The SPDE approach re-casts the sampling problem as the solution of a SPDE, e.g.

Lu = u −∆u = Ẇ .

The (deterministic!) operator L determines the covariance of u.
Ẇ is spatial white noise and is defined through its action against test functions.

Let Vh = span({φi}ndofsi=1 ) be the FEM approximation subspace used to solve the SPDE.
After discretisation, we obtain the linear system

Au = b , where b ∼ N (0,M), Mij =

∫
D
φiφj dx ,

Aij =

∫
D
φiφj dx +

∫
D
∇φi · ∇φj dx

Refs: [Abrahamsen 1997, Scheuerer 2010, Lindgren et al. 2009, Bolin et al. 2017, Khristenko et al. 2018]
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SPDE approach and non-nested multilevel Monte Carlo

Let {V`}L`=0 be a hierarchy of (possibly non-nested) FEM approximation subspaces with

V` = span({φ`i }
n`dofs
i=1 ). On each MLMC level, we need to solve for u` and u`−1,

Lu` = Ẇ , and Lu`−1 = Ẇ , if ` > 0,

where we use the same white noise sample on both levels to enforce the MLMC coupling.

After discretisation, the above yields the linear system,[
A` 0

0 A`−1

][
u`

u`−1

]
=

[
b`

b`−1

]
= b, where b ∼ N (0,M).

Here M is the mass matrix over V` + V`−1, (set V−1 = ∅), i.e.

M =

[
M` M`,`−1

(M`,`−1)T M`−1

]
, M`,`−1

ij =

∫
φ`iφ

`−1
j dx, if ` > 0.

NOTE: we do not require the FEM approximation subspaces to be nested!
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How to sample b?

Sampling b is hard!

Näıve approach

• Factorise the covariance M using Cholesky (cubic complexity!)

• Works well if M diagonal. Previous work under this assumption [Lindgren et
al. 2009, Osborn et al. 2017, Drzisga, et al. 2017, Du and Zhang 2002].

Our Work [C. et al. 2018]

• We do not require M to be diagonal.

• We can sample b with linear complexity.
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Sampling b in linear complexity: MC [C. et al. 2018]

The idea is to exploit the FEM assembly of the mass matrix [Wathen 1987]:

M = LT


M1 0 · · ·
0 M2

. . .
...

. . .
. . .

 L = LTdiage(Me)L. (1)
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Sampling b in linear complexity: MC [C. et al. 2018]

Disjoint pieces of white noise are independent. Sample small independent local
white noise vectors on each cell and assemble the contributions together.

N (0,M) ∼ b = LT

 b1

b2
...

 = LT vstacke(be) (2)

NOTE: only local Cholesky factorisations are needed, and trivially parallelisable!
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Sampling b in linear complexity: MLMC [C. et al. 2018]

Construct a FEM subspace S` such that V` and V`−1 are both nested within S`. This
requires a supermesh construction [Farrell 2009]:

Sample b`
S ∼ N (0,M`

S) where M`
S is the mass matrix over S` and get b` and b`−1 by

transferring b`
S onto V` and V`−1 using nested interpolation.

Linear cost complexity [C. and Farrell 2020], and trivially parallelisable!
Can also sample (ML)QMC-ready white noise samples in linear cost [C. et al. 2020]!
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Numerical results: FEM convergence (2D and 3D)
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Numerical results: covariance convergence (2D and 3D)
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QMC vs MLMC vs MLQMC cost comparison (2D)
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Inspired by a clinical study

Recall: ċ(t, x , ω) +∇ · (v(x , ω)c(t, x , ω))−∇ · (D∗(x , ω)∇c(t, x , ω)) = 0,

We consider different models for v and D∗, each corresponding to a different hypothesis
on solute movement available in the medical literature. See [C. et al. 2019, C. et al. 2020].

Objective: performing UQ to find which models are more likely to match with
experimental data and thus hold true in practice, and which MC method works best.
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Glymphatic MRI in humans: clinical results

Ringstad et al. inject a contrast agent (gadobutrol) directly into the spinal canal at the
lumbar level and they use MRI to measure how it spreads in the brain.
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Boundary conditions & quantities of interests

We impose no tracer flux across the ventricles
and we model the upward movement of the
tracer with the external interface BC

c(t, x) = cCSF(t, c)h(t, x),

cCSF(t, c) = CSF tracer concentration,
h(t, x) = spatial distribution of tracer.

We compute the probability density function of the following quantities of interest:

• Qg (t, ω) = total amount of tracer in the grey matter at time t.

• Qw (t, ω) = total amount of tracer in the white matter at time t.

M. Croci Non-nested ML(Q)MC



Stochastic modelling: diffusivity

Physical and physiological restrictions:

• Average tracer diffusivity and patient-variability known.

• D∗ > 0 (diffusion coefficient must be positive).

• D∗(x , ω) varies in space at a given length scale λD ≈ 0.01m.

Modelling solution:
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Stochastic modelling: velocity

According to the glymphatic hypothesis CSF enters the brain from para-arterial spaces
(arteries) and exits from para-venous spaces (veins).

[Source: The Glymphatic System: A Beginner’s Guide by Jessen et al., 2015]
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A complex vascular structure

We assume that significant changes within the velocity field happen after a distance
proportional to the mean distance between arterioles and venules. Set λv = 560µm.

Other requirements: Prescribed average velocity magnitude. No ISF enters/leaves the
system (∇ · v = 0). Arteries and veins equally likely at any point in space.
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Glymphatic velocity model with directionality

Top picture from [Kiviniemi et al. 2016]
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Simulation results (pure homogeneous diffusion)
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Simulation results (pure homogeneous diffusion)

Key observation: tracer penetrates into gray matter, but not into deep central regions.
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Results

D1 = pure hom. diffusion, V 1 = glymphatic model, V 2 = V 1 + directionality.

Key observations:
1) Glymphatic alone and pure diffusion are not sufficient to match experimental data
and a bulk flow with directionality is required.
2) Models using only a homogeneous diffusion coefficient are subject to large
patient-to-patient variability.
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Algorithm comparison: MC vs MLMC vs QMC

Solve on Abel, the Norwegian supercomputing cluster (TOP500 in 2012, now retired).
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Conclusion: MLMC superior (O(1) wks time), vs standard MC O(10) yrs (in parallel)!
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Conclusions

Gaussian field sampling and non-nested ML(Q)MC:

• When dealing with uncertainty in spatially varying quantities random fields are
required, but their sampling can be expensive. We used the SPDE approach.

• Thanks to our research, we can sample Matérn-Gaussian fields in linear cost
complexity, even in a non-nested ML(Q)MC setting via a supermesh construction.

• This is because we proved that supermeshes between quasi-uniform meshes have
numbers of cells which are linear in the number of cells of the parent meshes.

UQ in brain tracer simulation:

• The human brain is a challenging subject to study and model parameters (and
sometimes models themselves) are affected by a significant degree of uncertainty.

• The uncertainty in model predictions can be quantified with advanced Monte Carlo
methods. ML(Q)MC seems to be the most efficient approach.

• Thanks to UQ we discovered the only two medical hypotheses leading to
mathematical models that match experimental data.
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Thank you for listening! If you want to know more:

Papers, slides, and more info at: https://croci.github.io

Shameless advert: My SIAM CSE talk on Reduced precision solvers for parabolic
PDEs, Tue 2 March at 10:25 (minisymposium code: MS112).
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Quasi Monte Carlo and multilevel quasi Monte Carlo

Approximate E[P] with an s-dimensional integral over [0, 1]s :

E[P] ≈
∫
[0,1]s

Y (x)dx ≈ 1

N

N∑
n=1

Y (xn),
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Pseudo-random points. Low-discrepancy point sequence (Sobol’).

QMC convergence rate up to O(N−1) ⇒ up to O(ε−1−q) complexity.
Combine with MLMC to get O(ε−1) complexity and MLQMC.
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Extending work to QMC and MLQMC: the challenge

• Low-discrepancy sequences are extremely uniform in the first few dimensions and in
low-dimensional projections, but less so across the whole hypercube. Therefore
QMC works best when the integrand has low effective dimension (adapted
from [Caflish et al. 1997 and Joe and Kuo 2008]).

• For good QMC convergence we need to order the dimensions in our QMC
integrands in order of decaying importance so that the largest error components are
on the first dimensions.

• Solution: rewrite Ẇ in terms of basis functions that naturally expose the leading
order dimensions in the QMC integrand. Wavelets work well [Kuo et al. 2015,
Hermann and Schwab 2017].

• Result: we can sample (ML)QMC-ready white noise in linear complexity, even with
non-nested hierarchies [C. et al. 2020]!
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SPDE approach and standard Monte Carlo

Definition [Spatial White Noise Ẇ (Hida et al. 1993)]

For any φ ∈ L2(D), define 〈Ẇ , φ〉 :=
∫
D φ dẆ . For any φi , φj ∈ L2(D), bi = 〈Ẇ , φi 〉,

bj = 〈Ẇ , φj〉 are zero-mean Gaussian random variables, with,

E[bibj ] =

∫
D
φiφj dx =: Mij , b ∼ N (0,M).

Let Vh = span({φi}ndofsi=1 ) ⊆ H1
0 be the FEM approximation subspace used to solve the

SPDE Lku = Ẇ . After discretisation, we obtain the linear system

Aku = b , where b ∼ N (0,M), Mij =

∫
D
φiφj dx ,

Aij =

∫
D
φiφj dx +

∫
D
κ−2∇φi · ∇φj dx
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