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d Motivation

The motivation of our research is the sampling of lognormal Gaussian fields. A Matérn
Gaussian field (approximately) satisfies a linear elliptic SPDE of the form

Lu = Ẇ , x ∈ D, ω ∈ Ω + BCs,

where u = u(x , ω) and Ẇ is spatial white noise. Other approaches can be used (with
pros and cons), but we will not discuss them here.

The same techniques can be used to solve a more general class of SPDEs, e.g.

N(u) + Lu = Ẇ , x ∈ D, ω ∈ Ω + BCs.

In this case solving means to compute E[P(u)] for some functional P of the solution.

Common applications: finance, geology, meteorology, biology. . .

Main issue: sampling Ẇ is hard!

The efficient sampling of Ẇ is the focus of this talk.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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N(u) + Lu = Ẇ , x ∈ D, ω ∈ Ω + BCs.

In this case solving means to compute E[P(u)] for some functional P of the solution.

Common applications: finance, geology, meteorology, biology. . .

Main issue: sampling Ẇ is hard!
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d White noise (1D)
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d White noise (2D)

WARNING! Point evaluation not defined!

IDEA! Avoid point evaluation by integrating Ẇ .
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d White noise (2D)

WARNING! Point evaluation not defined!

IDEA! Avoid point evaluation by integrating Ẇ .
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d White Noise (practical definition)

Definition (Spatial White Noise Ẇ )

For any φ ∈ L2(D), define 〈Ẇ , φ〉 :=
∫
D Ẇφ dx . For any φi , φj ∈ L2(D), bi = 〈Ẇ , φi 〉,

bj = 〈Ẇ , φj〉 are zero-mean Gaussian random variables, with,

E[bibj ] =

∫
D
φiφj dx =: Mij , b ∼ N (0,M). (1)

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d White Noise (practical definition)

IMPORTANT NOTE: Generalised random fields of type I and of type II.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d Finite element (FEM) framework

When solving SPDEs (see 1st slide) with FEM, we get (for linear problems)

Discrete weak form: find uh ∈ Vh s.t. for all vh ∈ Vh,

a(uh, vh) = 〈Ẇ , vh〉, (2)

Where Vh = span({φi}ni=0), (e.g. with Lagrange elements).

FEM linear system: uh =
∑

i uiφi , u = [u0, . . . , un]T ,

Au = b(ω), (3)

where the entries of b are given by,

〈Ẇ , φi 〉(ω) = bi (ω), (4)

with b ∼ N (0,M) as before. M is the mass matrix of Vh.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d Multilevel Monte Carlo [Giles 2008] + FEM framework

For MLMC, we have two approximation levels ` and `− 1. For any particular ω ∈ Ω, we
need to solve: find u`h ∈ V `

h , u`−1
h ∈ V `−1

h s.t. for all v `h ∈ V `
h , v `−1

h ∈ V `−1
h ,

a(u`h, v
`
h) = 〈Ẇ , v `h〉(ω), (5)

a(u`−1
h , v `−1

h ) = 〈Ẇ , v `−1
h 〉(ω). (6)

This yields the linear system[
A` 0

0 A`−1

][
u`

u`−1

]
=

[
b`

b`−1

]
= b,

where b ∼ N (0,M). Let V `
h = span({φ`i }

n`
i=0) and V `−1

h = span({φ`−1
i }n`−1

i=0 ), then

M =

[
M` M`,`−1

(M`,`−1)T M`−1

]
, M`,`−1

ij =

∫
φ`iφ

`−1
j dx.

NOTE: we do not require the FEM approximation subspaces to be nested!

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d The challenge

SAMPLING PROBLEM 1: single level realisations:
sample b ∼ N (0,M), where M is the mass matrix of Vh.

SAMPLING PROBLEM 2: coupled realisations:
sample b ∼ N (0,M), where M is the block mass matrix given by V `

h and V `−1
h .

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d How to sample b?

Sampling b is hard!

Näıve approach

- Factorise M = HHT (cubic complexity!) and set b = Hz, with z ∼ N (0, I ).

⇒ E[bbT ] = E[Hz(Hz)T ] = HE[zzT ]HT = HIHT = M.

- Works well if M diagonal: previous work used either mass-lumping [Lindgren, Rue
and Lindström 2009], piecewise constant elements [Osborn, Vassilevski and Villa
2017] or a piecewise constant approximation of white noise [Drzisga, et al. 2017,
Du and Zhang 2002].

- We do not require M to be diagonal (and we do not approximate white noise).

- We can sample b with linear complexity.

IDEA! H does not need to be square, maybe we can find a more efficient factorisation!

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d White noise sampling: single level realisations

SAMPLING PROBLEM 1: need to sample b ∼ N (0,M).

Exploit the FEM assembly

M = LT


M1 0 · · ·

0 M2
. . .

...
. . .

. . .

 L = LTdiage(Me)L. (7)

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d White noise sampling: single level realisations

SAMPLING PROBLEM 1: need to sample b ∼ N (0,M).

Exploit the FEM assembly

N (0,M) ∼ b = LT

 b1

b2
...

 = LT vstacke(be) (8)

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d White noise sampling: single level realisations

SAMPLING PROBLEM 1: need to sample b ∼ N (0,M).

Exploit the FEM assembly

- Each be can be sampled as be = Heze with ze ∼ N (0, I ) and HeH
T
e = Me .

- b = LT vstacke(be) is N (0,M) since

E[bbT ] = LTE[vstacke(be)vstacke(be)T ]L

= LTdiage(He)diage(HT
e )L = LTdiage(Me)L = M.

- If the mapping to the FEM reference element is affine (e.g. Lagrange elements on
simplices) we have that Me/|e| = const on each element and only one local
factorisation is needed.

This approach is trivially parallelisable!

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d White noise sampling: coupled realisations

SAMPLING PROBLEM 2: need to sample b ∼ N (0,M), where M is now the block
mixed mass matrix.

Definition (Supermesh, [Farrell 2009])

Let A and B be two (possibly non-nested) meshes. Their supermesh S is one of their
common refinements. A and B are both nested within S .

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d White noise sampling: coupled realisations

SAMPLING PROBLEM 2: need to sample b ∼ N (0,M), where M is now the block
mixed mass matrix.

- Factorise locally, this time on each supermesh element.

- Sample b on S , then interpolate/project the result onto A and B (this step can be
performed locally).

- Since A and B are nested within S , this operation is exact. Note that A and B
need not be nested.

Previous work on white noise coupling for MLMC used either a nested hierarchy [Drzisga
et al. 2017, Osborn et al. 2017] or an algebraically constructed hierarchy of
agglomerated meshes [Osborn, Vassilevski and Villa 2017].

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d Complexity overview

offline cost online cost (per sample) memory storage

single level 0 (or O(m3N)) O(m3N) (or O(m2N)) O(m2) (or O(m2N))
single l. (affine) O(m3) O(m2N) O(m2)
coupled 0 (or O(m3NS)) O(m3NS) (or O(m2NS)) O(m2) (or O(m2NS))
coupled (affine) O(m3) O(m2NS) O(m2)

Table: Memory and cost complexity of our white noise sampling strategy. In the non-affine case
the cost per sample can be lowered by precomputing and storing the local factorisations (see
entries in blue). NS is the number of supermesh elements. In our experience with MLMC,
NS ≤ cdN` and cd = 2 (1D), cd = 2.5 (2D), cd = 45 (3D).

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d Numerical results: convergence of P(u) = ‖u‖2L2(D)

Consider the linear elliptic SPDE [Lindgren, Rue and Lindström 2009], [Bolin, Kirchner
and Kovács 2017],(

I − κ−2∆
)k

u(x , ω) = ηẆ , x ∈ D ⊆ Rd , ω ∈ Ω, ν = 2k − d/2 > 0.

We compute FEM solutions {u`h}`=8
`=1 with a non-nested hierarchy of subspaces {V `

h}`=8
`=1.
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d Numerical results: covariance convergence

C(r) = E[u(x)u(y)] =
1

2ν−1Γ(ν)
(κr)νKν(κr), r = ‖x − y‖2, κ =

√
8ν

λ
, x , y ∈ D,
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d Conclusions and further work

Outlook

- White noise is an extremely non-smooth object and is defined through its integral.

- We can sample single level white noise realisations efficiently.

- We can couple white noise between different FEM approximation subspaces. A
supermesh construction is not needed in the nested case.

- The overall order of complexity is linear in the number of elements of the
supermesh and it can be trivially parallelised. Standard techniques usually have
cubic complexity.

Further work: extensions to QMC and MLQMC.

Paper: https://arxiv.org/abs/1803.04857
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d References - Thank you for listening!
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