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d Introduction

The motivation of our research is the solution of partial differential equations with
random coefficients via the multilevel Quasi-Monte Carlo method.

Today we focus on the ubiquitous model problem,

−∇ · (eu(x ,ω)∇p(x , ω)) = 1, x ∈ G ⊂ Rd , ω ∈ Ω,
p(x , ω) = 0, x ∈ ∂G , ω ∈ Ω.

Here u(x , ω) ∼ N (0, C(x , y)) is a (Matérn) Gaussian random field and we are interested
in computing E[P], where P(ω) = ||p||2L2(G)(ω).

Simple approach: standard Monte Carlo (MC) method,

E[P] ≈ 1

N

N∑
n=1

P(ωn).

Convergence rate O(N−1/2). O(ε−q) cost per sample ⇒ O(ε−2−q) complexity for ε tol.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d From standard Monte Carlo to Quasi Monte Carlo

Approximate E[P] with an s-dimensional integral over [0, 1]s ,

E[P] ≈
∫
[0,1]s

Y (x)dx ≈ 1

N

N∑
n=1

Y (xn),
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Pseudo-random points. Low-discrepancy point sequence (Sobol’).

QMC convergence rate up to O(N−1) ⇒ up to O(ε−1−q) complexity.
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d Randomised Quasi Monte Carlo

E[P] ≈
∫
[0,1]s

Y (x)dx ≈ 1

M

M∑
m=1

(
1

N

N∑
n=1

Y (x̂n,m)

)
,

where {x̂n,m}Nn=1 is the m-th randomisation of a low-discrepancy point set {xn}Nn=1.
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First N = 256 Sobol’ points before (left) and after (right) scrambling.

QMC convergence rate up to O(N−1) ⇒ up to O(ε−1−q) complexity.
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d Multilevel Monte Carlo [Giles 2008]

Solve for P using a hierarchy of L + 1 (possibly non-nested) meshes to obtain the
approximations P` of different accuracy for ` = 0, . . . , L, then

E[P] ≈ E[PL] = E[P0] +
L∑

`=0

E[P` − P`−1].

Apply standard MC to each term on the RHS:

E[P] ≈ 1

N0

N0∑
n=1

P0(ωn
0) +

L∑
`=0

1

N`

N∑̀
n=1

[P`(ω
n
` )− P`−1(ωn

` )].

Under suitable conditions =⇒ optimal N` known and O(ε−2) complexity, O(ε−q) better
than MC.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d Multilevel Quasi Monte Carlo [Giles and Waterhouse 2009]

We now approximate each expectation in the telescoping sum with randomised quasi
Monte Carlo (QMC). Rewrite E[P` − P`−1] as the s`-dimensional integral over [0, 1]s` ,

E[P` − P`−1] =

∫
[0,1]s`

Y`(x)dx ≈ 1

M

M∑
m=1

(
1

N`

N∑̀
n=1

Y`(x̂`
n,m)

)
= Ŷ`,

where {x̂`
n,m}N`

n=1 is the m-th randomisation of a low-discrepancy point set {x`
n}N`

n=1. We
use M = 32 and random digital shifted Sobol’ sequences1.

QMC integration convergence2 up to O(N−1` ) =⇒ complexity up to O(ε−1).

1Python-wrapped Intel R© MKL library Sobol’ sequence implementation augmented with Joe and
Kuo’s primitive polynomials and direction numbers (smax = 21201) [Joe and Kuo 2008].

2Lots of recent work with randomly shifted lattice rules [Kuo, Schwab, Sloan 2015, Kuo, Scheichl,
Schwab, Sloan, Ullmann 2017, Herrmann and Schwab 2017,...].

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d Gaussian field sampling

Sampling the Gaussian field u(x , ω) ∼ N (0, C) is hard!

Näıve approach

Discretise u and compute a Cholesky factorization of the covariance matrix.

Better approaches

Karhunen-Loève.

FFT + circulant embeddings. [Dietrich and Newsam 1997]

PDE approach [Lindgren et al. 2009] (see next).

Lots of recent developments related to ML(Q)MC: [Kuo et al. 2015, Kuo et al. 2018, Graham et al.
2018, Drzisga et al. 2017, Herrmann and Schwab 2017, Osborn et al. 2018, C. et al. 2018, ...]

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d PDE approach to Matérn field sampling [Lindgren et al. 2009]

If the covariance of u is of the Matérn class with smoothness parameter ν, then u
approximately satisfies the linear elliptic SPDE,

Lu(x , ω) =
(
I − κ−2∆

)k
u(x , ω) = ηẆ , x ∈ D ⊂ Rd , ν = 2k − d/2 > 0,

where Ẇ is spatial white noise, G ⊂ D, η ∈ R and for today k ∈ N, η = 1.

Spatial white noise in [0, 1]2.

Refs: [Abrahamsen 1997, Scheuerer 2010, Lindgren et al. 2009, Bolin et al. 2017, Khristenko et al. 2018]

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d PDE approach to Matérn field sampling [Lindgren et al. 2009]

Definition (Spatial White Noise Ẇ (Hida et al. 1993))

For any φ ∈ L2(D), define 〈Ẇ , φ〉 :=
∫
D φ dẆ . For any φi , φj ∈ L2(D), bi = 〈Ẇ , φi 〉,

bj = 〈Ẇ , φj〉 are zero-mean Gaussian random variables, with,

E[bibj ] =

∫
D
φiφj dx =: Mij , b ∼ N (0,M). (1)

Spatial white noise in [0, 1]2.

Refs: [Abrahamsen 1997, Scheuerer 2010, Lindgren et al. 2009, Bolin et al. 2017, Khristenko et al. 2018]
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d Efficient white noise sampling for MLMC [C. et al. 2018]

Let {V`}L`=0 be a hierarchy of (possibly non-nested) FEM approximation subspaces with

V` = span({φ`i }
n`dofs
i=1 ) ⊆ H1

0 (D). On each MLMC level, we need to solve for u` and u`−1,

Lu` = Ẇ , and Lu`−1 = Ẇ , if ` > 0,

where we use the same white noise sample on both levels to enforce the MLMC coupling.

After discretisation, the above yields the linear system,[
A` 0

0 A`−1

][
u`

u`−1

]
=

[
b`

b`−1

]
= b, where b`

i = 〈Ẇ , φ`i 〉.

Hence b ∼ N (0,M), where M is the mass matrix over V` + V`−1, (set V−1 = ∅), i.e.

M =

[
M` M`,`−1

(M`,`−1)T M`−1

]
, M`,`−1

ij =

∫
φ`iφ

`−1
j dx, if ` > 0.

NOTE: we do not require the FEM approximation subspaces to be nested!

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d How to sample b?

Sampling b is hard!

Näıve approach

Factorise the covariance M using Cholesky (cubic complexity!)

Works well if M diagonal. Previous work under this assumption [Lindgren et
al. 2009, Osborn et al. 2017, Drzisga, et al. 2017, Du and Zhang 2002].

Our Work [C. et al. 2018]

We do not require M to be diagonal.

We can sample b with linear complexity.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d Sampling b in linear complexity (Sketch) [C. et al. 2018]

Two ingredients: supermeshing [Farrell 2009] and local factorisation [Wathen 1987].

1. Supermeshing: construct a FEM subspace S` such that V` and V`−1 are both
nested within S`. This requires a supermesh construction:

Sample b`
S ∼ N (0,M`

S) where M`
S is the mass matrix over S` and get b` and b`−1

by transferring b`
S onto V` and V`−1 using nested interpolation.

2. Local factorisation: spatially disjoint pieces of white noise are independent,
we can sample small independent local white noise vectors b`

e ∼ N (0,M`
e) on

each supermesh cell e and assemble the contributions together to obtain b`
S .

RESULT: Linear cost complexity and trivially parallelisable!

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d Related work

Herrmann and Schwab (2017 pre-print)

Same application problem.

Some aspects of the theory are very general.

Algorithm is detailed only for 1D, nested, structured grids.

Truncated QMC.

Our work

Focussed on algorithm development for 2D and 3D, non-nested, unstructured grids.

Non-truncated hybrid QMC/MC.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d Extending work on MLMC to MLQMC: the challenge

Low-discrepancy sequences are extremely uniform in the first few dimensions and in
low-dimensional projections, but less so across the whole hypercube. Therefore
QMC works best when the integrand has low effective dimension (adapted
from [Joe and Kuo 2008]).

For good QMC convergence we need to order the dimensions in our QMC
integrands in order of decaying importance so that the largest error components are
on the first dimensions.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d Haar wavelet expansion of white noise

From now on, D = [0, 1]d . We expand Ẇ into a Haar wavelet series. Let
l ∈ ({−1} ∩ N)d , n ∈ Nd , |l | = maxi (li ), x+ = max(x , 0), H−1,0(x) = 1D(x),

0 1x
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H
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Ẇ =

|l |=∞∑
|l |=−1

(2l−1)+∑
n=0

zl ,n(ω)Hl ,n(x), zl ,n ∼ N (0, 1) i.i.d.
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d Multilevel Quasi Monte Carlo white noise sampling

The H0,0 = H0,0(x)H0,0(y) 2D Haar wavelet and the

level L = |l | = 1 Haar mesh.

Truncate the series of Ẇ at Haar level L .
Let ẆL := truncation, ẆR := remainder.

Ẇ = ẆL + ẆR .

1) Order all the NL = 2d(L+1) coefficients
in ẆL according to |l |1.

2) Use hybrid MC/QMC sampling (figure).

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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Let ẆL := truncation, ẆR := remainder.
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d Multilevel Quasi Monte Carlo white noise sampling

ẆR is sampled with pseudo-random points so no ordering needed. The covariance
of ẆR is known and a similar technique as in MLMC can be used for the sampling.

This time a 3-way supermesh is required. Let NS = # supermesh cells. The Haar
mesh is “nice” so we expect NS ≤ C (d) (# cells of the finest parent mesh).
Numerical experiments suggest C (d) < 3 in 1D and 2D and C (d) ≈ O(50) in 3D.

Overall Matérn field sampling cost is O(NL log(NL ) + NS), where the log term
can be dropped if using locally supported Haar wavelets or if d = 1. L ≤ Lmax.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling
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d MC vs QMC vs MLQMC (2D, ν = 1, M = 256)
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d MLQMC convergence and cost (2D, ν = 1)
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d Conclusions

Outlook

Ordering the variables is needed for good QMC convergence.

Asymptotic QMC convergence rate is still O(N−1/2). However, large gains to be
found in the pre-asymptotic regime while keeping the QMC dimension contained.

We can couple white noise between different FEM approximation subspaces. A
supermesh construction is not needed in the nested case. 2-way supermesh needed
for MLMC and 3-way supermesh needed for MLQMC.

The overall order of complexity is linear in the number of elements of the
supermesh and it can be trivially parallelised. Standard techniques usually have
cubic complexity.

Software used: FEniCS, libsupermesh, Intel R© MKL. Fast FEniCS-based Matérn
field and white noise sampling software to appear on Bitbucket soon!

JUQ paper (MLMC only) and slides: https://croci.github.io

MLQMC paper and PhD thesis to be submitted soon, please read both!
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d Selected references - Thank you for listening!

JUQ paper [1] and slides: https://croci.github.io
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